ﻻ يوجد ملخص باللغة العربية
According to a recent proposal [S. Takayama et al., Appl. Phys. Lett. 87, 061107 (2005)], the triangular lattice of triangular air holes may allow to achieve a complete photonic band gap in two-dimensional photonic crystal slabs. In this work we present a systematic theoretical study of this photonic lattice in a high-index membrane, and a comparison with the conventional triangular lattice of circular holes, by means of the guided-mode expansion method whose detailed formulation is described here. Photonic mode dispersion below and above the light line, gap maps, and intrinsic diffraction losses of quasi-guided modes are calculated for the periodic lattice as well as for line- and point-defects defined therein. The main results are summarized as follows: (i) the triangular lattice of triangular holes does indeed have a complete photonic band gap for the fundamental guided mode, but the useful region is generally limited by the presence of second-order waveguide modes; (ii) the lattice may support the usual photonic band gap for even modes (quasi-TE polarization) and several band gaps for odd modes (quasi-TM polarization), which could be tuned in order to achieve doubly-resonant frequency conversion between an even mode at the fundamental frequency and an odd mode at the second-harmonic frequency; (iii) diffraction losses of quasi-guided modes in the triangular lattices with circular and triangular holes, and in line-defect waveguides or point-defect cavities based on these geometries, are comparable. The results point to the interest of the triangular lattice of triangular holes for nonlinear optics, and show the usefulness of the guided-mode expansion method for calculating photonic band dispersion and diffraction losses, especially for higher-lying photonic modes.
A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an ef
YbMgGaO$_{4}$, a structurally perfect two-dimensional triangular lattice with odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments of Yb$^{3+}$ ions, is likely to experimentally realize the quantum spin liqu
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave freque
Snow crystals growing from water vapor occasionally exhibit morphologies with three-fold (trigonal) symmetry, even though the ice crystal lattice has a molecular structure with six-fold symmetry. In extreme cases, thin platelike snow crystals can gro
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO 4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an