ترغب بنشر مسار تعليمي؟ اضغط هنا

Rms-flux relation of Cyg X-1 with RXTE: dipping and nondipping cases

164   0   0.0 ( 0 )
 نشر من قبل YaJuan Lei
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rms (root mean square) variability is the parameter for understanding the emission temporal properties of X-ray binaries (XRBs) and active galactic nuclei (AGN). The rms-flux relation with Rossi X-ray Timing Explorer (RXTE) data for the dips and nondip of black hole Cyg X-1 has been investigated in this paper. Our results show that there exist the linear rms-flux relations in the frequency range 0.1-10 Hz for the dipping light curve. Moreover, this linear relation still remains during the nondip regime, but with the steeper slope than that of the dipping case in the low energy band. For the high energy band, the slopes of the dipping and nondipping cases are hardly constant within errors. The explanations of the results have been made by means of the ``Propagating Perturbation model of Lyubarskii (1997).



قيم البحث

اقرأ أيضاً

We study the long term evolution of the relationship between the root mean square (rms) variability and flux (the ``rms-flux relation) for the black hole Cygnus X-1 as monitored from 1996 to 2003 with the Rossi X-ray Timing Explorer (RXTE). We confir m earlier results by Uttley & McHardy (2001) of a linear relationship between rms and flux in the hard state on time scales > 5 s reflecting in its slope the fractional rms variability. We demonstrate the perpetuation of the linear rms-flux relation in the soft and the intermediate state. The existence of a non-zero intercept in the linear rms-flux relation argues for two lightcurve components, for example, one variable and one non-variable component, or a possible constant rms component. The relationship between these two hypothesized components can be described by a fundamental dependence of slope and intercept at time scales ~< 10 ksec with long term averages of the flux.
A linear dependence of the amplitude of broadband noise variability on flux for GBHC and AGN has been recently shown by Uttley & McHardy (2001). We present the long term evolution of this rms-flux-relation for Cyg X-1 as monitored from 1998-2002 with RXTE. We confirm the linear relationship in the hard state and analyze the evolution of the correlation for the period of 1996-2002. In the intermediate and the soft state, we find considerable deviations from the otherwise linear relationship. A possible explanation for the rms-flux-relation is a superposition of local mass accretion rate variations.
We analyze X-ray light curves of the blazars Mrk 421, PKS 2155-304, and 3C 273 using observations by the Soft X-ray Telescope on board AstroSat and archival XMM-Newton data. We use light curves of length 30-90 ks each from 3-4 epochs for all three bl azars. We apply the autoregressive integrated moving average (ARIMA) model which indicates the variability is consistent with short memory processes for most of the epochs. We show that the power spectral density (PSD) of the X-ray variability of the individual blazars are consistent within uncertainties across the epochs. This implies that the construction of broadband PSD using light curves from different epochs is accurate. However, using certain properties of the variance of the light curves and its segments, we show that the blazars exhibit hints of non-stationarity beyond that due to their characteristic red noise nature in some of those observations. We find a linear relationship between the root-mean-squared amplitude of variability at shorter timescales and the mean flux level at longer timescales for light curves of Mrk 421 across epochs separated by decades as well as light curves spanning 5 days and $sim$10 yr. The presence of flux-rms relation over very different timescales may imply that, similar to the X-ray binaries and Seyfert galaxies, longer and shorter timescale variability are connected in blazars.
We analyse ~ 360 ks of archival data from the Rossi X-Ray Timing Explorer (RXTE) of the 21 hr orbital period dipping low-mass X-ray binary 4U 1624-49. We find that outside the dips the tracks in the colour-colour and hardness-intensity diagrams (CDs and HIDs) are reminiscent of those of atoll sources in the middle and upper parts of the banana branch. The tracks show secular shifts up to ~ 10%. We study the power spectrum of 4U 1624-49 as a function of the position in the CD. This is the first time power spectra of this source are presented. No quasi-periodic oscillations (QPOs) are found. The power spectra are dominated by very low frequency noise (VLFN), characteristic for atoll sources in the banana state, and band limited noise (BLN) which is not reliably detected but may, uncharacteristically, strengthen and increase in frequency with spectral hardness. The VLFN fits to a power law, which becomes steeper when the source moves to the harder part of the CD. We conclude that 4U 1624-49 is an atoll source which in our observations is in the upper banana branch. Combining this with the high (0.5-0.7 L_Edd) luminosity, the long-term flux stability of the source as seen with the RXTE All-Sky Monitor (ASM), and with the fact that it is an X-ray dip source, we conclude that 4U 1624-49 is most likely a GX atoll source such as GX 3+1 and GX 9+9, but seen edge on.
84 - Y.X. Feng , 1998
X-ray shots of Cyg X-1 in different energy bands and spectral states have been studied with PCA/RXTE observations. The detailed shot structure is obtained by superposing many shots with one millisecond time bin through aligning their peaks with an im proved algorithm. In general, the shots are composed of a slow rise and fast decay. The shot structures in the different states are different. The duration of shot in the high state is shorter than that in the low and transition states. The shot profile in the high energy band is more asymmetric and narrower than that in the low energy band. The average hardness of shot is lower than that of steady emission in the transition and low states but higher than that in the high state. The time lags between the shots in higher and lower energy bands have been found in the different states. In transition states, the time lag is the largest among the different states of Cyg X-1, and it is the smallest in the low state. The implications of the observed shot features for shot models are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا