ﻻ يوجد ملخص باللغة العربية
We present constraints on the mean matter density, Omega_m, dark energy density, Omega_de, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT>5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05<z<1.1. Using only the fgas data for the 6 lowest redshift clusters at z<0.15, for which dark energy has a negligible effect on the measurements, we measure Omega_m=0.28+-0.06 (68% confidence, using standard priors on the Hubble Constant, H_0, and mean baryon density, Omega_bh^2). Analyzing the data for all 42 clusters, employing only weak priors on H_0 and Omega_bh^2, we obtain a similar result on Omega_m and detect the effects of dark energy on the distances to the clusters at ~99.99% confidence, with Omega_de=0.86+-0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the fgas data, despite a weighted mean statistical scatter in the distance measurements of only ~5%. For a flat cosmology with constant w, we measure Omega_m=0.28+-0.06 and w=-1.14+-0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on Omega_bh^2 and H_0 and leads to tighter constraints: Omega_m=0.253+-0.021 and w=-0.98+-0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the fgas method. (Abridged)
We present constraints on the mean matter density, Omega_m, the normalization of the density fluctuation power spectrum, sigma_8, and the dark-energy equation-of-state parameter, w, obtained from measurements of the X-ray luminosity function of the l
We present radial mass profiles within 0.3 r_vir for 16 relaxed galaxy groups-poor clusters (kT range 1-3 keV) selected for optimal mass constraints from the Chandra and XMM data archives. After accounting for the mass of hot gas, the resulting mass
We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us
X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we study the effects of galax
We use a sample of 14 massive, dynamically relaxed galaxy clusters to constrain the Hubble Constant, $H_0$, by combining X-ray and Sunyaev-Zeldovich (SZ) effect signals measured with Chandra, Planck and Bolocam. This is the first such analysis to mar