ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy merging in MOND

122   0   0.0 ( 0 )
 نشر من قبل Carlo Nipoti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of N-body simulations of dissipationless galaxy merging in Modified Newtonian Dynamics (MOND). For comparison, we also studied Newtonian merging between galaxies embedded in dark matter halos, with internal dynamics equivalent to the MOND systems. We found that the merging timescales are significantly longer in MOND than in Newtonian gravity with dark matter, suggesting that observational evidence of rapid merging could be difficult to explain in MOND. However, when two galaxies eventually merge, the MOND merging end-product is hardly distinguishable from the final stellar distribution of an equivalent Newtonian merger with dark matter.



قيم البحث

اقرأ أيضاً

99 - O. Tiret , F. Combes 2007
The LCDM model is the most commonly admitted to describe our Universe. In spite of a great success with regard to the large scale structure formation, some problems are still unresolved at galactic scales. Alternative scenarios have to be explored su ch as modified gravity. We have developed an N-body code able to solve in a self consistent way the galactic dynamics in MOND. The first version of the code consists in solving the modified Poisson equation on a uniform Cartesian grid to derive the gravitational force on each particle. With it, we study the evolution of isolated galaxies, like the bar instability, the angular momentum transfer, etc. Galaxies in MOND are found to form stronger bars, faster than in Newtonian dynamics with dark matter. In a second step, we implement an adaptive mesh refinement technique in the code, allowing to run more contrasted simulations on larger scales, like interacting galaxies. During an interaction, the dynamical friction forces are less important in MOND, and merging times are longer than in DM models. The different morphologies of interacting galaxies in the two models are discussed. All simulations are performed in both frameworks of modified gravity and Newtonian gravity with dark matter with equivalent initial conditions.
Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given po tential, the shell radii at a given time after the merger can be calculated and compared to observations. The Modified Newtonian Dynamics (MOND) is a theory that aims to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. Hernquist & Quinn(1987) claimed that the shell distribution of NGC 3923 contradicted MOND, but Milgrom(1988) found several substantial insufficiencies in their work. Aims. We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowledge of the shell number and positions and of the host galaxy surface brightness profile, which supersede the data available in the 1980s when the last (and negative) tests of MOND viability were performed on NGC 3923. Methods. Using the 3.6 um bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy. The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for their multi-generation formation, unlike the Hernquist & Quinn one-generation model that used the 18 shells known at the time. Results. Our model reproduces the observed shell radii with a maximum deviation of 5% for 25 out of 27 known shells while keeping a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario supported by the extreme shell radial range. The 25 reproduced shells are interpreted as belonging to three generations.
Mass models of 15 nearby dwarf and spiral galaxies are presented. The galaxies are selected to be homogeneous in terms of the method used to determine their distances, the sampling of their rotation curves (RCs) and the mass-to-light ratio (M/L) of t heir stellar contributions, which will minimize the uncertainties on the mass model results. Those RCs are modeled using the MOdified Newtonian Dynamics (MOND) prescription and the observationally motivated pseudo-isothermal (ISO) dark matter (DM) halo density distribution. For the MOND models with fixed (M/L), better fits are obtained when the constant a$_{0}$ is allowed to vary, giving a mean value of (1.13 $pm$ 0.50) $times$ 10$^{-8}$ cm s$^{-2}$, compared to the standard value of 1.21 $times$ 10$^{-8}$ cm s$^{-2}$. Even with a$_{0}$ as a free parameter, MOND provides acceptable fits (reduced $chi^{2}_{r}$ $<$ 2) for only 60% (9/15) of the sample. The data suggest that galaxies with higher central surface brightnesses tend to favor higher values of the constant a$_{0}$. This poses a serious challenge to MOND since a$_{0}$ should be a universal constant. For the DM models, our results confirm that the DM halo surface density of ISO models is nearly constant at $ rho_{0} R_{C} sim 120 M_{odot} pc^{-2}$. This means that if the (M/L) is determined by stellar population models, ISO DM models are left with only one free parameter, the DM halo central surface density.
106 - HongSheng Zhao 2008
The tight correlation between galaxy bulges and their central black hole masses likely emerges in a phase of rapid collapse and starburst at high redshift, due to the balance of gravity on gas with the feedback force from starbursts and the wind from the black hole; the average gravity on per unit mass of gas is ~ 2 x 10^-10 m/sec^2 during the star burst phase. This level of gravity could come from the real r^{-1} cusps of Cold Dark Matter (CDM) halos, but the predicted gravity would have a large scatter due to dependence on cosmological parameters and formation histories. Better agreement is found with the gravity from the scalar field in some co-varia
93 - Ji-Hoon Ha , 2017
X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of sub-clumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we here focus on the simulated clusters that undergo almost head-on collisions with mass ratio $sim2$. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, $left<M_sright>$, increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, $F_phi$, peaks at $sim1$ Gyr after their initial launching, or at $sim1-2$ Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with $left< M_s right>_{rm CR}sim3-4$, compared to the kinetic-energy-weighted Mach number, $left<M_sright>_{phi}sim2-3$. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located in the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا