ﻻ يوجد ملخص باللغة العربية
The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.
Solar activity in all its varied manifestations is driven by the magnetic field. Particularly important for many purposes are two global quantities, the Suns total and open magnetic flux, which can be computed from sunspot number records using models
Two of the most important features of the solar atmosphere are its hot, smooth coronal loops and the concentrations of magnetic shear, known as filament channels, that reside above photospheric polarity inversion lines (PILs). The shear observed in f
During eruptive flares, vector magnetograms show increasing horizontal magnetic field and downward Lorentz force in the Suns photosphere around the polarity-inversion line. Such behavior has often been associated with the implosion conjecture and int
The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Suns total open flux, is observed to vary by roughly a factor of two over the 11 yr solar cycle. Several recent studies have proposed that the
We present the magnetic landscape of the polar region of the Sun that is unprecedented in terms of high spatial resolution, large field of view, and polarimetric precision. These observations were carried out with the Solar Optical Telescope aboard e