ﻻ يوجد ملخص باللغة العربية
We will look for an implementation of new symmetries in the space-time structure and their cosmological implications. This search will allow us to find a unified vision for electrodynamics and gravitation. We will attempt to develop a heuristic model of the electromagnetic nature of the electron, so that the influence of the gravitational field on the electrodynamics at very large distances leads to a reformulation of our comprehension of the space- time structure at quantum level through the elimination of the classical idea of rest. This will lead us to a modification of the relativistic theory by introducing the idea about a universal minimum limit of speed in the space- time. Such a limit, unattainable by the particles, represents a preferred frame associated with a universal background field (a vacuum energy), enabling a fundamental understanding of the quantum uncertainties. The structure of space-time becomes extended due to such a vacuum energy density, which leads to a negative pressure at the cosmological scales as an anti-gravity, playing the role of the cosmological constant. The tiny values of the vacuum energy density and the cosmological constant will be successfully obtained, being in agreement with current observational results.
In this work we suggest (in a formal analogy with Linde chaotic inflation scenario) simple dynamical model of the dark energy or cosmological constant. Concretely, we suggest a Lagrangian dependent of Universe scale factor and scalar field (with cons
The cosmological constant $Lambda$ is a free parameter in Einsteins equations of gravity. We propose to fix its value with a boundary condition: test particles should be free when outside causal contact, e.g. at infinity. Under this condition, we sho
In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how th
We present a possible understanding to the issues of cosmological constant, inflation, matter and coincidence problems based only on the Einstein equation and Hawking particle production. The inflation appears and results agree to observations. The C
A quantum equation of gravity is proposed using the geometrical quantization of general relativity. The quantum equation for a black hole is solved using the Wentzel-Kramers-Brillouin (WKB) method. Quantum effects of a Schwarzschild black hole are de