We show that for a fixed curve $K$ and for a family of variables curves $L$, the number of $n$-Poncelet pairs is $frac{e (n)}{2}$, where $e(n)$ is the number of natural numbers $m$ smaller than $n$ and which satisfies mcd $ (m,n)=1$. The curvee $K$ do not have to be part of the family. In order to show this result we consider an associated billiard transformation and a twist map which preserves area. We use Aubry-Mather theory and the rotation number of invariant curves to obtain our main result. In the last section we estimate the derivative of the rotation number of a general twist map using some properties of the continued fraction expansion .