ﻻ يوجد ملخص باللغة العربية
Exciton levels and fine-structure splitting in laterally-coupled quantum dot molecules are studied. The electron and hole tunneling energies as well as the direct Coulomb interaction are essential for the exciton levels. It is found that fine-structure splitting of the two-lowest exciton levels is contributed from the intra- and inter-dot exchange interactions, both of which are largely influenced by the symmetry and tunnel-coupling between the two dots. As the inter-dot separation is reduced, fine-structure splitting of the exciton ground state is largely increased while those of the excited states are decreased. Moreover, the dependence of the fine-structure splitting in quantum dot molecules on the Coulomb correlation is clearly clarified.
With non-invasive methods, we investigate ground and excited states of a lateral quantum dot. Charge detection via a quantum point contact is used to map the dot dynamics in a regime where the current through the dot is too low for transport measurem
We derive a general relation between the fine structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots (QDs) under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exci
We propose an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle of quantum dot ensembles (QDEs). We derive the distributions of FSS and polarization angle for QDEs and show that th
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum d
In a charge tunable device, we investigate the fine structure splitting of neutral excitons in single long-wavelength (1.1mu m < lambda < 1.3 mu m) InGaAs quantum dots as a function of external uniaxial strain. Nominal fine structure splittings betwe