We consider the realization of a quantum computer in a chain of nuclear spins coupled by an Ising interaction. Quantum algorithms can be performed with the help of appropriate radio-frequency pulses. In addition to the standard nearest-neighbor Ising coupling, we also allow for a second neighbor coupling. It is shown, how to apply the 2pi k method in this more general setting, where the additional coupling eventually allows to save a few pulses. We illustrate our results with two numerical simulations: the Shor prime factorization of the number 4 and the teleportation of a qubit along a chain of 3 qubits. In both cases, the optimal Rabi frequency (to suppress non-resonant effects) depends primarily on the strength of the second neighbor interaction.