ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy

131   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3 (100)substrates by the pulsed laser deposition technique, and were studied by measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band region as a function of film thickness, both at room temperature and low temperature. Our results demonstrated an abrupt variation in the spectral structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers) Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to the intrinsic size effects.



قيم البحث

اقرأ أيضاً

We present a study of the thickness dependence of magnetism and electrical conductivity in ultra thin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films di sappeared and simultaneously the Curie temperature (TC) increased, indicating a magnetic insulating phase at room temperature. These samples have a TC of about 560 K with a significant saturation magnetization of 1.2 +- 0.2 muB/Mn. The canted antiferromagnetic insulating phase in ultra thin films of n< 10 coincides with the occurrence of a higher symmetry structural phase with a different oxygen octahedra rotation pattern. Such a strain engineered phase is an interesting candidate for an insulating tunneling barrier in room temperature spin polarized tunneling devices.
Metal-insulator transition is observed in the La0.8Sr0.2MnO3 thin films with thickness larger than 5 unit cells. Insulating phase at lower temperature appeared in the ultrathin films with thickness ranging from 6 unit cells to 10 unit cells and it is found that the Mott variable range hopping conduction dominates in this insulating phase at low temperature with a decrease of localization length in thinner films. A deficiency of oxygen content and a resulted decrease of the Mn valence have been observed in the ultrathin films with thickness smaller than or equal to 10 unit cells by studying the aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy of the films. These results suggest that the existence of the oxygen vacancies in thinner films suppresses the double-exchange mechanism and contributes to the enhancement of disorder, leading to a decrease of the Curie temperature and the low temperature insulating phase in the ultrathin films. In addition, the suppression of the magnetic properties in thinner films indicates stronger disorder of magnetic moments, which is considered to be the reason for this decrease of the localization length.
In this paper we report the effect of hydrogen on the structural properties of AISI-H13 steel nitrogen-implanted samples in low oxygen partial pressure atmosphere. The samples were implanted in a high vacuum chamber by using a broad ion beam source. The H2+/N2+ ion composition of the beam was varied and the surface composition studied in situ by photoemission electron spectroscopy (XPS). The samples were also ex situ analyzed by X-ray diffraction and scanning electron microscopy (SEM), including energy-dispersive spectroscopy measurements. It was found that hydrogen has the effect of modifying the amount of retained nitrogen at the surfaces. This result shows that hydrogen plays a role beyond the well-established effect of oxygen etching in industrial machines where vacuum is relatively less well controlled. Finally, an optimum concentration of 20 to 40% [H2]/[H2+N2] ion beam composition was determined to obtain maximum nitrogen incorporation on the metal surface.
424 - Han-Jin Noh , H. Koh , S.-J. Oh 2008
The electronic structure of $p$-type doped BiTe is studied by angle resolved photoemission spectroscopy (ARPES) to experimentally confirm the mechanism responsible for the high thermoelectric figure of merit. Our ARPES study shows that the band edges are located off the $Gamma$-Z line in the Brillouin zone, which provides direct observation that the spin-orbit interaction is a key factor to understand the electronic structure and the corresponding thermoelectric properties of BiTe. Successive time dependent ARPES measurement also reveals that the electron-like bands crossing E$_F$ near the $underline{Gamma}$ point are formed in an hour after cleaving the crystals. We interpret these as surface states induced by surface band bending, possibly due to quintuple inter-layer distance change of BiTe.
Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا