ﻻ يوجد ملخص باللغة العربية
We investigate the age constraints that can be placed on the double pulsar system using models for the spin-down of the first-born 22.7-ms pulsar A and the 2.77-s pulsar B with characteristic ages of 210 and 50 Myr respectively. Standard models assuming dipolar spin-down of both pulsars suggest that the time since the formation of B is ~50 Myr, i.e. close to Bs characteristic age. However, adopting models which account for the impact of As relativistic wind on Bs spin-down we find that the formation of B took place either 80 or 180 Myr ago, depending the interaction mechanism. Formation 80 Myr ago, closer to Bs characteristic age, would result in the contribution from J0737-3039 to the inferred coalescence rates for double neutron star binaries increasing by 40%. The 180 Myr age is closer to As characteristic age and would be consistent with the most recent estimates of the coalescence rate. The new age constraints do not significantly impact recent estimates of the kick velocity, tilt angle between pre and post-supernova orbital planes or pre-supernova mass of Bs progenitor.
The double pulsar J0737-3039 is the only known system in which the relativistic wind emitted by a radio pulsar demonstrably interacts with the magnetosphere of another one. We report radio interferometric observations of the J0737-3039 system with th
We present the first optical observations of the unique system J0737-3039 (composed of two pulsars, hereafter PSR-A and PSR-B). Ultra-deep optical observations, performed with the High Resolution Camera of the Advanced Camera for Surveys on board the
The double pulsar system J0737-3039 is not only a test bed for General Relativity and theories of gravity, but also provides a unique laboratory for probing the relativistic winds of neutron stars. Recent X-ray observations have revealed a point sour
We report results from Exploratory Time observations of the double-pulsar system PSR J0737-3039 using the Green Bank Telescope (GBT). The large gain of the GBT, the diversity of the pulsar backends, and the four different frequency bands used have al
We have investigated the eclipse of the 23-ms pulsar J0737-3039A by its 2.8-s companion PSR J0737-3039B in the recently discovered double pulsar system using data taken with the Green Bank Telescope at 820 MHz. We find that the pulsed flux density at