ﻻ يوجد ملخص باللغة العربية
Most cool core clusters of galaxies possess active galactic nuclei (AGN) in their centers. These AGN inflate buoyant bubbles containing non-thermal radio emitting particles. If such bubbles efficiently confine cosmic rays (CR) then this could explain ``radio ghosts seen far from cluster centers. We simulate the diffusion of cosmic rays from buoyant bubbles inflated by AGN. Our simulations include the effects of the anisotropic particle diffusion introduced by magnetic fields. Our models are consistent with the X-ray morphology of AGN bubbles, with disruption being suppressed by the magnetic draping effect. We conclude that for such magnetic field topologies, a substantial fraction of cosmic rays can be confined inside the bubbles on buoyant rise timescales even when the parallel diffusivity coefficient is very large. For isotropic diffusion at a comparable level, cosmic rays would leak out of the bubbles too rapidly to be consistent with radio observations. Thus, the long confinement times associated with the magnetic suppression of CR diffusion can explain the presence of radio ghosts. We show that the partial escape of cosmic rays is mostly confined to the wake of the rising bubbles, and speculate that this effect could: (1) account for the excitation of the H$alpha$ filaments trailing behind the bubbles in the Perseus cluster, (2) inject entropy into the metal enriched material being lifted by the bubbles and, thus, help to displace it permanently from the cluster center and (3) produce observable $gamma$-rays via the interaction of the diffusing cosmic rays with the thermal intracluster medium (ICM).
We explore physical properties of the shocked external medium (i.e., a shell) in 3C 84 associated with the recurrent radio lobe born around 1960. In the previous work of Ito et al., we investigated a dynamical and radiative evolution of such a shell
We report the discovery of seven new fossil systems in the 400d cluster survey. Our search targets nearby, $zle0.2$, and X-ray bright, $L_Xge 10^{43}$ erg sec$^{-1}$, clusters of galaxies. Where available, we measure the optical luminosities from Slo
Fossil galaxy groups are spatially extended X-ray sources with X-ray luminosities above L_X,bol > 10^42 h_50^-2 ergs s^-1 and a central elliptical galaxy dominating the optical, the second-brightest galaxy being at least 2 magnitudes fainter in the R
Recent efforts in cosmic ray (CR) confinement and transport theory are discussed. Three problems are addressed as being crucial for understanding the present day observations and their possible telltale signs of the CR origin. The first problem conce
While rich clusters are powerful sources of X-rays, gamma-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consi