ترغب بنشر مسار تعليمي؟ اضغط هنا

Old Metal-rich Globular Cluster Populations: Peak Color and Peak Metallicity Trends with Mass of Host Spheroids

180   0   0.0 ( 0 )
 نشر من قبل Valery V. Kravtsov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of the factors contributing to a peak color trend of old metal-rich globular cluster (MRGC) populations with mass of their hosts, early-type galaxies and spheroidal subsystems of spiral ones (spheroids). The color-mass trend is often converted to a metallicity-mass trend under the assumption that age effects are small or negligible. While direct estimates of the ages of MRGC populations neither can rule out nor reliably support the populations age trend, key data on timing of the formation of spheroids and other indirect evidence imply it in the sense: the more massive spheroid the older on average its MRGC population. We show that the contribution of an allowable age trend of the MRGC populations to their peak color trend can achieve up to ~50 % or so. In this event the comparable value of the color trend, ~30 %, is due to alpha-element ratio systematic variations of the order of Delta[alpha/Fe] ~ 0.1 to 0.2 dex because of a correlation between the [alpha/Fe] ratios and age. Hence a systematic variation of exactly [Fe/H] ratios may turn out to be less significant among the contributors, and its range many times lower, i.e. of the order of Delta[Fe/H] ~ 0.1 or even none, than the corresponding range deduced by assuming no age trend.



قيم البحث

اقرأ أيضاً

Peak metallicities of metal-rich(MR) populations of GCs belonging to spheroids of different mass fall within the somewhat conservative -0.7<=[Fe/H]<=-0.3 range. Indeed, if possible age effects are taken into account,this metallicity range might becom e smaller. Irregulars, like the LMC, with longer timescales of their formation and lower star formation (SF) efficiency do not contain the old MRGCs with [Fe/H]>-1.0,but they are observed to form populations of young/ intermediate-age massive star clusters (MSCs) with masses exceeding 10^4 Msol. Their formation is widely believed to be accidental process fully depending on external factors. From analysis of data available on the populations and their hosts, including populous star clusters in the LMC, we find that their most probable mean metallicities fall within -0.7<=[Fe/H]<=-0.3, as the peak metallicities of MRGCs do, irrespective of sings of interaction. Moreover, both the disk giant metallicity distribution function (MDF) in the LMC and the MDFs for old giants in the halos of massive spheroids exhibit significant increasing toward [Fe/H]~-0.5. That is in agreement with a correlation found between SF activity in galaxies and their metallicity. The formation of both the old MRGCs in spheroids and MSC populations in irregulars probably occurs approximately at the same stage of the host galaxies chemical evolution and is related to the essentially increased SF activity in the hosts around the same metallicity that is achieved very soon in massive spheroids, later in lower-mass spheroids, and much more later in irregulars. (Abridged)
We report the confirmation of an old, metal-poor globular cluster in the nearby dwarf irregular galaxy Sextans A, the first globular cluster known in this galaxy. The cluster, which we designate as Sextans A-GC1, lies some 4.4 arcminutes ($sim1.8$ kp c) to the SW of the galaxy centre and clearly resolves into stars in sub-arcsecond seeing ground-based imaging.We measure an integrated magnitude $V=18.04$, corresponding to an absolute magnitude, $M_{V,0} = -7.85$. This gives an inferred mass $Msim$1.6$times10^5~Modot$, assuming a Kroupa IMF. An integrated spectrum of Sextans A-GC1 reveals a heliocentric radial velocity $v_{rm helio}=305pm15$~ km/s, consistent with the systemic velocity of Sextans A. The location of candidate red giant branch stars in the cluster, and stellar population analyses of the clusters integrated optical spectrum, suggests a metallicity [Fe/H] $sim$--2.4, and an age $sim9$ Gyr. We measure a half light radius, $R_h = 7.6pm0.2$ pc. Normalising to the galaxy integrated magnitude, we obtain a $V$-band specific frequency, $S_N=2.1$. We compile a sample of 1,928 GCs in 28 galaxies with spectroscopic metallicities and find that the low metallicity of Sextans A-GC1 is close to a metallicity floor at [Fe/H] $sim-2.5$ seen in these globular cluster systems which include the Milky Way, M31, M87 and the Large Magellanic Cloud. This metallicity floor appears to hold across 6 dex in host galaxy stellar mass and is seen in galaxies with and without accreted GC subpopulations.
We perform a series of numerical experiments to study how the nonlinear metallicity--color relations predicted by different stellar population models affect the color distributions observed in extragalactic globular cluster systems. % We present simu lations in the $UBVRIJHK$ bandpasses based on five different sets of simple stellar population (SSP) models. The presence of photometric scatter in the colors is included as well. % We find that unimodal metallicity distributions frequently ``project into bimodal color distributions. The likelihood of this effect depends on both the mean and dispersion of the metallicity distribution, as well as of course on the SSP model used for the transformation. % Adopting the Teramo-SPoT SSP models for reference, we find that optical--to--near-IR colors should be favored with respect to other colors to avoid the bias effect in globular cluster color distributions discussed by citet{yoon06}. In particular, colors such as vh or vk are more robust against nonlinearity of the metallicity--color relation, and an observed bimodal distribution in such colors is more likely to indicate a true underlying bimodal metallicity distribution. Similar conclusions come from the simulations based on different SSP models, although we also identify exceptions to this result.
Globular Clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us wich Galactic structure (Disk, Bulge, Halo or extragalactic) the cluster b elongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the Thick Disk. We present abundance analysis based on high resolution spectra of 7 giant stars. The data were obtained using FLAMES/UVES spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal motivation of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H]=-0.47 $pm$0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [$alpha$/Fe]=0.25 $pm$0.08. Iron-peak elements shows no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.
The statistics of peaks in weak lensing convergence maps is a promising tool to investigate both the properties of dark matter haloes and constrain the cosmological parameters. We study how the number of detectable peaks and its scaling with redshift depend upon the cluster dark matter halo profiles and use peak statistics to constrain the parameters of the mass - concentration (MC) relation. We investigate which constraints the Euclid mission can set on the MC coefficients also taking into account degeneracies with the cosmological parameters. To this end, we first estimate the number of peaks and its redshift distribution for different MC relations. We find that the steeper the mass dependence and the larger the normalisation, the higher is the number of detectable clusters, with the total number of peaks changing up to $40%$ depending on the MC relation. We then perform a Fisher matrix forecast of the errors on the MC relation parameters as well as cosmological parameters. We find that peak number counts detected by Euclid can determine the normalization $A_v$, the mass $B_v$ and redshift $C_v$ slopes and intrinsic scatter $sigma_v$ of the MC relation to an unprecedented accuracy being $sigma(A_v)/A_v = 1%$, $sigma(B_v)/B_v = 4%$, $sigma(C_v)/C_v = 9%$, $sigma(sigma_v)/sigma_v = 1%$ if all cosmological parameters are assumed to be known. Should we relax this severe assumption, constraints are degraded, but remarkably good results can be restored setting only some of the parameters or combining peak counts with Planck data. This precision can give insight on competing scenarios of structure formation and evolution and on the role of baryons in cluster assembling. Alternatively, for a fixed MC relation, future peaks counts can perform as well as current BAO and SNeIa when combined with Planck.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا