ترغب بنشر مسار تعليمي؟ اضغط هنا

Bures distance as a measure of entanglement for symmetric two-mode Gaussian states

139   0   0.0 ( 0 )
 نشر من قبل Paulina Marian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate a Gaussian entanglement measure for a symmetric two-mode Gaussian state of the quantum electromagnetic field in terms of its Bures distance to the set of all separable Gaussian states. The required minimization procedure was considerably simplified by using the remarkable properties of the Uhlmann fidelity as well as the standard form II of the covariance matrix of a symmetric state. Our result for the Gaussian degree of entanglement measured by the Bures distance depends only on the smallest symplectic eigenvalue of the covariance matrix of the partially transposed density operator. It is thus consistent to the exact expression of the entanglement of formation for symmetric two-mode Gaussian states. This non-trivial agreement is specific to the Bures metric.



قيم البحث

اقرأ أيضاً

A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy between symmetric two-mode Gaussian states is the diagonalization of their covariance matrices under the same beam-splitter transformation. The multiplicativity property of the Uhlmann fidelity and the additivity of the relative entropy allow one to finally deal with a single-mode optimization problem in both cases. We find that only the Bures-distance Gaussian entanglement is consistent with the exact entanglement of formation.
We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states (where initial single mode compression is $z_0$) provided the two mode squeezing $r_0$ satisfies $0 < r_0 < 1/2 log (cosh (2 z_0)).$ We also give the analytical expressions for the time of ESD. Finally, we show the relation between the single modes initial impurities and the initial entanglement, where we exhibit that the later is suppressed by the former.
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine pr incipal upper bounds on the stabilizable entanglement, while in the last model, arbitrary amounts of entanglement can be stabilized. All three models exhibit a tradeoff between state entanglement and purity in the entanglement maximizing limit. Our results are derived from the Hamiltonian-independent stabilizability conditions for Gaussian systems. Here, we sharpen these conditions with respect to their applicability.
We evaluate a Gaussian distance-type degree of nonclassicality for a single-mode Gaussian state of the quantum radiation field by use of the recently discovered quantum Chernoff bound. The general properties of the quantum Chernoff overlap and its re lation to the Uhlmann fidelity are interestingly illustrated by our approach.
Especially investigated in recent years, the Gaussian discord can be quantified by a distance between a given two-mode Gaussian state and the set of all the zero-discord two-mode Gaussian states. However, as this set consists only of product states, such a distance captures all the correlations (quantum and classical) between modes. Therefore it is merely un upper bound for the geometric discord, no matter which is the employed distance. In this work we choose for this purpose the Hellinger metric that is known to have many beneficial properties recommending it as a good measure of quantum behaviour. In general, this metric is determined by affinity, a relative of the Uhlmann fidelity with which it shares many important features. As a first step of our work, the affinity of a pair of $n$-mode Gaussian states is written. Then, in the two-mode case, we succeeded in determining exactly the closest Gaussian product state and computed the Gaussian discord accordingly. The obtained general formula is remarkably simple and becomes still friendlier in the significant case of symmetric two-mode Gaussian states. We then analyze in detail two special classes of two-mode Gaussian states of theoretical and experimental interest as well: the squeezed thermal states and the mode-mixed thermal ones. The former are separable under a well-known threshold of squeezing, while the latter are always separable. It is worth stressing that for symmetric states belonging to either of these classes, we find consistency between their geometric Hellinger discord and the originally defined discord in the Gaussian approach. At the same time, the Gaussian Hellinger discord of such a state turns out to be a reliable measure of the total amount of its cross correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا