ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-exchange collisions of submerged shell atoms below 1 Kelvin

136   0   0.0 ( 0 )
 نشر من قبل Jack Harris
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angular momentum changing collisions can be suppressed in atoms whose valence electrons are submerged beneath filled shells of higher principle quantum number. To determine whether spin-exchange collisions are suppressed in these submerged shell atoms, we measured spin-exchange collisions of six hyperfine states of Mn at temperatures below 1 K. Although the 3d valence electrons in Mn are submerged beneath a filled 4s orbital, we find that the spin exchange rate coefficients are similar to those of Na and H (which are non-submerged shell atoms).



قيم البحث

اقرأ أيضاً

Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0 times 10^-10 cm^3 s^-1 and 1.1 times 10^-10 cm^3 s^-1, r espectively, 2-3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electrostatic anisotropy, in collisions between these submerged-shell L > 0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient.
We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calcul ated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van-der-Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments. All the experimental data is consistent with a simple and physically plausible scaling law for the spin-axis coupling coefficients.
148 - Chuanpeng Hao , Zheru Qiu , Qi Sun 2018
We study the interactions between oscillating non-resonant rf fields and atoms with strong spin-exchange collisions in the presence of a weak dc magnetic field. We find that the atomic Larmor precession frequency shows a new functional form to the rf field parameters when the spin-exchange collision rate is tuned. In the weak rf field amplitude regime, a strong modification of atomic Larmor frequency appears when the spin-exchange rate is comparable to the rf field frequency. This new effect has been neglected before due to its narrow observation window. We compare the experimental results with density matrix calculations, and explain the data by an underdamped oscillator model. When the rf field amplitude is large, there is a minimum atomic gyromagnetic ratio point due to the rf photon dressing, and we find that strong spin-exchange interactions modify the position of such a point.
We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 microns are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optic al resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the mF = 0 Zeeman state, we observe correlated pair creation in the mF = +/- 1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.
89 - Z. X. Zhao , T. Brabec 2006
A generalized ADK (Ammosov-Delone-Krainov) theory for ionization of open shell atoms is compared to ionization experiments performed on the transition metal atoms V, Ni, Pd, Ta, and Nb. Our theory is found to be in good agreement for V, Ni, Pd, and T a, whereas conventional ADK theory overestimates ionization by orders of magnitude. The key to understanding the observed ionization reduction is the angular momentum barrier. Our analysis shows that the determination of the angular momentum barrier in open shell atoms is nontrivial. The Stark shift is identified as the second dominant effect responsible for ionization suppression. Finally, these two effects cannot explain the Nb data. An analysis of the electron spins suggests that Pauli blocking might be responsible for the suppression of tunneling in Nb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا