ﻻ يوجد ملخص باللغة العربية
Point-determining graphs are graphs in which no two vertices have the same neighborhoods, co-point-determining graphs are those whose complements are point-determining, and bi-point-determining graphs are those both point-determining and co-point-determining. Bicolored point-determining graphs are point-determining graphs whose vertices are properly colored with white and black. We use the combinatorial theory of species to enumerate these graphs as well as the connected cases.
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In
We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed e
Building on previous work by the present authors [Proc. London Math. Soc. 119(2):358--378, 2019], we obtain a precise asymptotic estimate for the number $g_n$ of labelled 4-regular planar graphs. Our estimate is of the form $g_n sim gcdot n^{-7/2} rh
We consider pressing sequences, a certain kind of transformation of graphs with loops into empty graphs, motivated by an application in phylogenetics. In particular, we address the question of when a graph has precisely one such pressing sequence, th
We introduce a large family of combinatorial objects, called standard puzzles, defined by very simple rules. We focus on the standard puzzles for which the enumeration problems can be solved by explicit formulas or by classical numbers, such as binom