ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of uranium-based multilayers: II. Magnetic properties

106   0   0.0 ( 0 )
 نشر من قبل Ross Springell
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SQUID magnetometry and polarised neutron reflectivity measurements have been employed to characterise the magnetic properties of U/Fe, U/Co and U/Gd multilayers. The field dependence of the magnetisation was measured at 10K in magnetic fields from -70kOe to 70kOe. A temperature dependent study of the magnetisation evolution was undertaken for a selection of U/Gd samples. PNR was carried out in a field of 4.4kOe for U/Fe and U/Co samples (at room temperature) and for U/Gd samples (at 10K). Magnetic dead layers of about 15 Angstrom were observed for U/Fe and U/Co samples, consistent with a picture of interdiffused interfaces. A large reduction in the magnetic moment, constant over a wide range of Gd layer thicknesses, was found for the U/Gd system (about 4 Bohr magnetons compared with 7.63 for the bulk metal). This could be understood on the basis of a pinning of Gd moments arising from a column-like growth mechanism of the Gd layers. A study of the effective anisotropy suggests that perpendicular magnetic anisotropy could occur in multilayers consisting of thick U and thin Gd layers. A reduction in the Curie temperature was observed as a function of Gd layer thickness, consistent with a finite-size scaling behaviour.



قيم البحث

اقرأ أيضاً

This paper addresses the structural characterisation of a series of U/Fe, U/Co and U/Gd multilayers. X-ray reflectivity has been employed to investigate the layer thickness and roughness parameters along the growth direction and high-angle diffractio n measurements have been used to determine the crystal structure and orientation of the layers. For the case of uranium/transition metal systems, the interfaces are diffuse and the transition metals are present in a polycrystalline form of their common bulk phases with a preferred orientation along the closest packed planes; Fe, bcc (110) and Co, hcp (001), respectively. The uranium is present in a poorly crystalline orthorhombic, alpha-U state. In contrast, the U/Gd multilayers have sharp interfaces with negligible intermixing of atomic species, and have a roughness, which is strongly dependent on the gadolinium layer thickness. Diffraction spectra indicate a high degree of crystallinity in both U and Gd layers with intensities consistent with the growth of a novel hcp U phase, stabilised by the hcp gadolinium layers.
Recently we have demonstrated the presence of spin-orbit toque in FeMn/Pt multilayers which, in combination with the anisotropy field, is able to rotate its magnetization consecutively from 0o to 360o without any external field. Here, we report on an investigation of static and dynamic magnetic properties of FeMn/Pt multilayers using combined techniques of magnetometry, ferromagnetic resonance, inverse spin Hall effect and spin Hall magnetoresistance measurements. The FeMn/Pt multilayer was found to exhibit ferromagnetic properties, and its temperature dependence of saturation magnetization can be fitted well using a phenomenological model by including a finite distribution in Curie temperature due to subtle thickness variations across the multilayer samples. The non-uniformity in static magnetic properties is also manifested in the ferromagnetic resonance spectra, which typically exhibit a broad resonance peak. A damping parameter of around 0.106 is derived from the frequency dependence of ferromagnetic resonance linewidth, which is comparable to the reported values for other types of Pt-based multilayers. Clear inverse spin Hall signals and spin Hall magnetoresistance have been observed in all samples below the Curie temperature, which corroborate the strong spin-orbit torque effect observed previously.
169 - M. Csontos , J. Balogh , D. Kaptas 2005
Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperatur e dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given.
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur e below $T sub{N2}$ is unambiguously determined to be a fully 3-dimensional proper screw. Between $T sub{N1}$ and $T sub{N2}$ antiferromagnetic order is found that is essentially 2-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the ($H,K$) plane, whereas nearest neighbors along the $L$-direction are uncorrelated. Thus, the multiferroic state is realized only in the low-temperature 3-dimensional state and not in the 2-dimensional state.
All-Heusler multilayer structures have been investigated by means of high kinetic x-ray photoelectron spectroscopy and x-ray magnetic circular dichroism, aiming to address the amount of disorder and interface diffusion induced by annealing of the mul tilayer structure. The studied multilayers consist of ferromagnetic Co$_2$MnGe and non-magnetic Rh$_2$CuSn layers with varying thicknesses. We find that diffusion begins already at comparably low temperatures between 200 $^{circ}$C and 250 $^{circ}$C, where Mn appears to be most prone to diffusion. We also find evidence for a 4 {AA} thick magnetically dead layer that, together with the identified interlayer diffusion, are likely reasons for the small magnetoresistance found for current-perpendicular-to-plane giant magneto-resistance devices based on this all-Heusler system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا