ﻻ يوجد ملخص باللغة العربية
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the `Recent Fluid Deformation (RFD) approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the product of the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in Large Eddy Simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other `nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre
A nonlocal subgrid-scale stress (SGS) model is developed based on the convolution neural network (CNN), a powerful supervised data-driven approach. The CNN is an ideal approach to naturally consider nonlocal spatial information in prediction due to i
The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modeling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results
We present a new approach for constructing data-driven subgrid stress models for large eddy simulation of turbulent flows. The key to our approach is representation of model input and output tensors in the filtered strain rate eigenframe. Provided in
By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di