ﻻ يوجد ملخص باللغة العربية
Semiclassical calculations using the Herman-Kluk initial value treatment are performed to determine energy eigenvalues of bound and resonance states of the collinear helium atom. Both the $eZe$ configuration (where the classical motion is fully chaotic) and the $Zee$ configuration (where the classical dynamics is nearly integrable) are treated. The classical motion is regularized to remove singularities that occur when the electrons collide with the nucleus. Very good agreement is obtained with quantum energies for bound and resonance states calculated by the complex rotation method.
We numerically compare the semiclassical ``frozen Gaussian Herman-Kluk propagator [Chem. Phys. 91, 27 (1984)] and the ``thawed Gaussian propagator put forward recently by Baranger et al. [J. Phys. A 34, 7227 (2001)] by studying the quantum dynamics i
A method for carrying out semiclassical initial value representation calculations using first-principles molecular dynamics (FP-SC-IVR) is presented. This method can extract the full vibrational power spectrum of carbon dioxide from a single trajecto
We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian to treat
Strong interaction between the light field and an atom is often achieved with cavities. Recent experiments have used a different configuration: a propagating light field is strongly focused using a system of lenses, the atom being supposed to sit at
A Sagnac atom interferometer can be constructed using a Bose-Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two