ﻻ يوجد ملخص باللغة العربية
We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of each component and the pressure of the overall system, are incorporated in the model. We derived a symmetrical convection diffusion equation for each component as well as the Navier Stokes equation and continuity equation for the overall system. The algorithm was verified through simulations of binary and ternary systems. The equilibrium concentrations of components of binary and ternary systems simulated with our algorithm agree well with theoretical expectations.
We present a multi-scale lattice Boltzmann scheme, which adaptively refines particles velocity space. Different velocity sets, i.e., higher- and lower-order lattices, are consistently and efficiently coupled, allowing us to use the higher-order latti
We study liquid-vapor phase separation under shear via the Shan-Chen lattice Boltzmann model. Besides the rheological characteristics, we analyze the Kelvin-Helmholtz(K-H) instability resulting from the tangential velocity difference of the fluids on
The dynamics of dry active matter have implications for a diverse collection of biological phenomena spanning a range of length and time scales, such as animal flocking, cell tissue dynamics, and swarming of inserts and bacteria. Uniting these system
It is shown that the Shan-Chen (SC) model for non-ideal lattice fluids can be made compliant with a pseudo free-energy principle by simple addition of a gradient force, whose expression is uniquely specified in terms of the fluid density. This additi
We use computer simulations to investigate the stability of a two-component polymer brush de-mixing on a curved template into phases of different morphological properties. It has been previously shown via molecular dynamics simulations that immiscibl