ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of Nova Sgr 1998

93   0   0.0 ( 0 )
 نشر من قبل Margarida Hernanz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Hernanz




اسأل ChatGPT حول البحث

We report on X-ray observations of Nova Sagittarius 1998 (V4633 Sgr), performed with XMM-Newton at three different epochs, 934, 1083 and 1265 days after discovery. The nova was detected with the EPIC cameras at all three epochs, with emission spanning the whole energy range from 0.2 to 10 keV. The X-ray spectra do not change significantly at the different epochs, and are well fitted for the first and third observations with a multi-temperature optically thin thermal plasma, while lower statistics in the second observations lead to a poorer fit. The thermal plasma emission is most probably originated in the shock heated ejecta, with chemical composition similar to that of a CO nova. However, we can not completely rule out reestablished accretion as the origin of the emission. We also obtain upper limits for the temperature and luminosity of a potential white dwarf atmospheric component, and conclude that hydrogen burning had already turned-off by the time of our observations.



قيم البحث

اقرأ أيضاً

We report the results of observations of V4633 Sgr (Nova Sagittarii 1998) during 1998-2000. Two photometric periodicities were present in the light curve during the three years of observations: a stable one at P=3.014 h, which is probably the orbital period of the underlying binary system, and a second one of lower coherence, approximately 2.5 per cent longer than the former. The latter periodicity may be a permanent superhump, or alternatively, the spin period of the white dwarf in a nearly synchronous magnetic system. A third period, at P=5.06 d, corresponding to the beat between the two periods was probably present in 1999. Our results suggest that a process of mass transfer took place in the binary system since no later than two and a half months after the nova eruption. We derive an interstellar reddening of E(B-V)~0.21 from our spectroscopic measurements and published photometric data, and estimate a distance of d~9 kpc to this nova.
We report on the study of 14 XMM-Newton observations of the magnetar SGR 1806-20 spread over a period of 8 years, starting in 2003 and extending to 2011. We find that in mid 2005, a year and a half after a giant flare (GF), the torques on the star in creased to the largest value yet seen, with a long term average rate between 2005 and 2011 of $lvertdot{ u}rvertapprox1.35times10^{-11}$ Hz s$^{-1}$, an order of magnitude larger than its historical level measured in 1995. The pulse morphology of the source is complex in the observations following the GF, while its pulsed-fraction remained constant at about $7%$ in all observations. Spectrally, the combination of a black-body (BB) and power-law (PL) components is an excellent fit to all observations. The BB and PL fluxes increased by a factor of 2.5 and 4, respectively, while the spectra hardened, in concordance with the 2004 major outburst that preceded the GF. The fluxes decayed exponentially back to quiescence with a characteristic time-scale of $tausim1.5$ yrs, although they did not reach a constant value until at least 3.5 years later (2009). The long-term timing and spectral behavior of the source point to a decoupling between the mechanisms responsible for their respective behavior. We argue that low level seismic activity causing small twists in the open field lines can explain the long lasting large torques on the star, while the spectral behavior is due to a twist imparted onto closed field lines after the 2004 large outburst.
64 - B. J. Wilkes 2005
XMM-Newton spectra of five red, 2MASS AGN, selected from a sample observed by Chandra to be relatively X-ray bright and to cover a range of hardness ratios, confirm the presence of substantial absorbing material in three sources with optical classifi cations ranging from Type 1 to Type 2. A flat (hard), power law continuum is observed in the other two. The combination of X-ray absorption and broad optical emission lines suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this may arise in an extended region of ionised gas, perhaps linked with the polarised (scattered) optical light present in these sources. The spectral complexity revealed by XMM-Newton emphasizes the limitations of the low S/N chandra data. The new results strengthen our earlier conclusions that the observed X-ray continua of red AGN are unusually hard at energies >2 keV. Their observed spectra are consistent with contributing significantly to the missing hard/absorbed population of the Cosmic X-ray Background (CXRB) although their intrinsic power law slopes are typical of broad-line (Type 1) AGN (Gamma ~1.7-1.9). This suggests that the missing X-ray-absorbed CXRB population may include Type 1 AGN/QSOs in addition to the Type 2 AGN generally assumed.
A series of nine XMM-Newton observations of the radio-loud quasar 3C 273 are presented, concentrating mainly on the soft excess. Although most of the individual observations do not show evidence for iron emission, co-adding them reveals a weak, broad line (EW ~ 56 eV). The soft excess component is found to vary, confirming previous work, and can be well fitted with multiple blackbody components, with temperatures ranging between ~40 and ~330 eV, together with a power-law. Alternatively, a Comptonisation model also provides a good fit, with a mean electron temperature of ~350 eV, although this value is higher when the soft excess is more luminous over the 0.5-10 keV energy band. In the RGS spectrum of 3C 273, a strong detection of the OVII He-alpha absorption line at zero redshift is made; this may originate in warm gas in the local intergalactic medium, consistent with the findings of both Fang et al. (2003) and Rasmussen et al. (2003).
178 - S. Balman , P. Godon , E.M. Sion 2011
We present an analysis of X-ray and UV data obtained with the XMM-Newton Observatory of the long period dwarf nova RU Peg. RU Peg contains a massive white dwarf, possibly the hottest white dwarf in a dwarf nova, it has a low inclination, thus optimal ly exposing its X-ray emitting boundary layer, and has an excellent trigonometric parallax distance. We modeled the X-ray data using XSPEC assuming a multi-temperature plasma emission model built from the MEKAL code. We obtained a maximum temperature of 31.7 keV, based on the EPIC MOS1, 2 and pn data, indicating that RU Peg has an X-ray spectrum harder than most dwarf novae, except U Gem. This result is consistent with and indirectly confirms the large mass of the white dwarf in RU Peg. The X-ray luminosity we computed corresponds to a boundary layer luminosity for a mass accretion rate of 2.E-11 Msun/yr (assuming Mwd=1.3Msun), in agreement with an expected quiescent accretion rate. The modeling of the O VIII emission line at 19A as observed by the RGS implies a projected stellar rotational velocity of 695 km/s, i.e. the line is emitted from material rotating at about 936-1245 km/s (for i about 34-48deg) or about 1/6 of the Keplerian speed; this velocity is much larger than the rotation speed of the white dwarf inferred from the FUSE spectrum. Cross-correlation analysis yielded an undelayed component and a delayed component of 116 +/- 17 sec where the X-ray variations/fluctuations lagged the UV variations. This indicates that the UV fluctuations in the inner disk are propagated into the X-ray emitting region in about 116 sec. The undelayed component may be related to irradiation effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا