ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate regime in Tetrathiafulvalene-Chloranil (TTF-CA) pressure-induced neutral-ionic transition

144   0   0.0 ( 0 )
 نشر من قبل Matteo Masino
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed spectroscopic study of the pressure induced neutral-ionic phase transition (NIT) of the mixed-stack charge-transfer (CT) crystal tetrathiafulvalene-chloranil (TTF-CA). We show that the pressure induced phase transition is still first-order and involves the presence of an intermediate disordered phase, defined by the coexistence of two species of different ionicity. Further application of pressure gradually converts this phase into an homogeneous ferroelectric phase with a single ionicity. In addition, we detect strong pretransitional phenomena which anticipate the intermediate phase and are indicative of a precursor dynamic regime dominated by fluctuations.



قيم البحث

اقرأ أيضاً

Terahertz lights are usually generated through the optical rectification process within a femtosecond laser pulse in non-centrosymmetric materials. Here, we report a new generation mechanism of terahertz lights based upon a photoinduced phase transit ion (PIPT), in which an electronic structure is rapidly changed by a photoirradiation. When a ferroelectric organic molecular compound, tetrathiafulvalene-p-chloranil, is excited by a femtosecond laser pulse, the ionic-to-neutral transition is driven and simultaneously a strong terahertz radiation is produced. By analyzing the terahertz electric-field waveforms and their dependence on the polarization direction of the incident laser pulse, we demonstrate that the terahertz radiation originates from the ultrafast decrease of the spontaneous polarization in the photoinduced ionic-to-neutral transition. The efficiency of the observed terahertz radiation via the PIPT mechanism is found to be much higher than that via the optical rectification in the same material and in a typical terahertz emitter, ZnTe.
Based on the Phase Hamiltonian, two types of solitons are found to exist in the crossover region between band insulator and Mott insulator in one-dimension. Both of these solitons have fractional charges but with different spins, zero and 1/2, respec tively. The results are in accord with the experimental results by Kanoda et al. for TTF-Chloranil under pressure.
157 - Z. J. Xiang , G. J. Ye , C. Shang 2015
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear disp ersion, titanic magnetoresistance and unconventional superconductivity. Black phosphorus has recently emerged as an exceptional semiconductor with high carrier mobility and a direct, tunable bandgap. Of particular importance is the search for exotic electronic states in black phosphorus, which may amplify the materials potential beyond semiconductor devices. Here we show that a moderate hydrostatic pressure effectively suppresses the band gap and induces a Lifshitz transition from semiconductor to semimetal in black phosphorus; a colossal magnetoresistance is observed in the semimetallic phase. Quantum oscillations in high magnetic field reveal the complex Fermi surface topology of the semimetallic black phosphorus. In particular, a Dirac-like fermion emerges at around 1.2 GPa, which is continuously tuned by external pressure. The observed semi-metallic behavior greatly enriches black phosphoruss material property, and sets the stage for the exploration of novel electronic states in this material. Moreover, these interesting behaviors make phosphorene a good candidate for the realization of a new two-dimensional relativistic electron system, other than graphene.
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskite s Y2CoIrO6 and Y2CoRuO6 synthesized at ambient pressure show B-site order, while the polymorphs synthesized at 6 and 15 GPa are partially-ordered and disordered respectively. With the decrease of ordering degrees, the lattices are shrunken and the crystal structures alter from monoclinic to orthorhombic symmetry. Correspondingly, long-range ferrimagnetic order in the B-site ordered phases are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.
Cadmium arsenide Cd$_3$As$_2$ hosts massless Dirac electrons in its ambient-conditions tetragonal phase. We report X-ray diffraction and electrical resistivity measurements of Cd$_3$As$_2$ upon cycling pressure beyond the critical pressure of the tet ragonal phase and back to ambient conditions. We find that at room temperature the transition between the low- and high-pressure phases results in large microstrain and reduced crystallite size both on rising and falling pressure. This leads to non-reversible electronic properties including self-doping associated with defects and a reduction of the electron mobility by an order of magnitude due to increased scattering. Our study indicates that the structural transformation is sluggish and shows a sizable hysteresis of over 1~GPa. Therefore, we conclude that the transition is first-order reconstructive, with chemical bonds being broken and rearranged in the high-pressure phase. Using the diffraction measurements we demonstrate that annealing at ~200$^circ$C greatly improves the crystallinity of the high-pressure phase. We show that its Bragg peaks can be indexed as a primitive orthorhombic lattice with a_HP~8.68 A b_HP~17.15 A and c_HP~18.58 A. The diffraction study indicates that during the structural transformation a new phase with another primitive orthorhombic structure may be also stabilized by deviatoric stress, providing an additional venue for tuning the unconventional electronic states in Cd3As2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا