ترغب بنشر مسار تعليمي؟ اضغط هنا

N=2 supergravity in three dimensions and its Godel supersymmetric background

115   0   0.0 ( 0 )
 نشر من قبل Alberto T. Faraggi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Maximo Banados




اسأل ChatGPT حول البحث

The four dimensional Godel spacetime is known to have the structure M_3 x R. It is also known that the three-dimensional factor M_3 is an exact solution of three-dimensional gravity coupled to a Maxwell-Chern-Simons theory. We build in this paper a N=2 supergravity extension for this action and prove that the Godel background preserves half of all supersymmetries.



قيم البحث

اقرأ أيضاً

We consider general aspects of N=2 gauge theories in three dimensions, including their multiplet structure, anomalies and non-renormalization theorems. For U(1) gauge theories, we discuss the quantum corrections to the moduli space, and their relatio n to ``mirror symmetries of 3d N=4 theories. Mirror symmetry is given an interpretation in terms of vortices. For SU(N_c) gauge groups with N_f fundamental flavors, we show that, depending on the number of flavors, there are quantum moduli spaces of vacua with various phenomena near the origin.
129 - J. A. Gracey , I. Jack , C. Poole 2016
Recently, the existence of a candidate a-function for renormalisable theories in three dimensions was demonstrated for a general theory at leading order and for a scalar-fermion theory at next-to-leading order. Here we extend this work by constructin g the a-function at next-to-leading order for an N=2 supersymmetric Chern-Simons theory. This increase in precision for the a-function necessitated the evaluation of the underlying renormalization-group functions at four loops.
120 - J. Greitz , P.S. Howe 2011
The maximal supergravity theory in three dimensions, which has local SO(16) and rigid $E_8$ symmetries, is discussed in a superspace setting starting from an off-shell superconformal structure. The on-shell theory is obtained by imposing further cons traints. It is essentially a non-linear sigma model that induces a Poincare supergeometry that is described in detail. The possible $p$-form field strengths, for $p=2,3,4$, are explicitly constructed using supersymmetry and $E_8$. The gauged theory is also discussed.
We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R^n terms) in three-dimensional supergravity theories with N=1,2,3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in arXiv:0907.4658 and arXiv:1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N = 2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N = 3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N = 3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group t hat is (i) simple, and (ii) acts irreducibly on all the vector fields of the theory, including the ``graviphoton. Restricting ourselves to the theories that originate from five dimensions via dimensional reduction, we find that the generic Jordan family of MESGTs with the scalar manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four dimensions with the unifying global symmetry group SO(2,n). Of these theories only one can be gauged so as to obtain a unified YMESGT with the gauge group SO(2,1). Three of the four magical supergravity theories defined by simple Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions. Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family and the theories whose scalar manifolds are homogeneous but not symmetric do not lead to unified MESGTs in four dimensions. The three infinite families of unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras, whose scalar manifolds are non-homogeneous, do not lead directly to unified MESGTs in four dimensions under dimensional reduction. However, since their manifolds are non-homogeneous we are not able to completely rule out the existence of symplectic sections in which these theories become unified in four dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا