ﻻ يوجد ملخص باللغة العربية
A spectroscopic method for staggered fermions based on thermodynamical considerations is proposed. The canonical partition functions corresponding to the different quark number sectors are expressed in the low temperature limit as polynomials of the eigenvalues of the reduced fermion matrix. Taking the zero temperature limit yields the masses of the lowest states. The method is successfully applied to the Goldstone pion and both dynamical and quenched results are presented showing good agreement with that of standard spectroscopy. Though in principle the method can be used to obtain the baryon and dibaryon masses, due to their high computational costs such calculations are practically unreachable.
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the c
Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the ba
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because
Lattice QCD has matured to a degree where it is now possible to study excited hadrons as they truly appear in nature, as short-lived resonant enhancements decaying into multiple possible final states. Through variational analysis of matrices of corre
I review recent results on hadron spectroscopy using lattice QCD. In light of the discoveries in heavy baryon sector at LHCb over the past few years, lattice calculations in this regard are emphasized. Investigations on light baryon, heavy-heavy and heavy-light meson resonances are also discussed.