ﻻ يوجد ملخص باللغة العربية
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modelled by a random variable that can be expressed as a function of a collection of independent random variables called market factors. With each such X-factor we associate a market information process, the values of which are accessible to market agents. Each information process is a sum of two terms; one contains true information about the value of the market factor; the other represents noise. The noise term is modelled by an independent Brownian bridge. The market filtration is assumed to be that generated by the aggregate of the independent information processes. The price of an asset is given by the expectation of the discounted cash flows in the risk-neutral measure, conditional on the information provided by the market filtration. When the cash flows are the dividend payments associated with equities, an explicit model is obtained for the share-price, and the prices of options on dividend-paying assets are derived. Remarkably, the resulting formula for the price of a European call option is of the Black-Scholes-Merton type. The information-based framework also generates a natural explanation for the origin of stochastic volatility.
We propose an extension of the Cox-Ross-Rubinstein (CRR) model based on q-binomial (or Kemp) random walks, with application to default with logistic failure rates. This model allows us to consider time-dependent switching probabilities varying accord
A financial market model where agents trade using realistic combinations of buy-and-hold strategies is considered. Minimal assumptions are made on the discounted asset-price process - in particular, the semimartingale property is not assumed. Via a n
We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multi
Consider a financial market with nonnegative semimartingales which does not need to have a num{e}raire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are al
In this paper, we consider a dynamic asset pricing model in an approximate fractional economy to address empirical regularities related to both investor protection and past information. Our newly developed model features not only in terms with a cont