ترغب بنشر مسار تعليمي؟ اضغط هنا

Staggered Heavy Baryon Chiral Perturbation Theory

250   0   0.0 ( 0 )
 نشر من قبل Jon Bailey
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Jon A. Bailey




اسأل ChatGPT حول البحث

Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.



قيم البحث

اقرأ أيضاً

110 - C. Aubin , C. Bernard 2007
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the lig ht meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick within schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors $Btopi$ and $Dto K$ when the light quarks are simulated with the staggered action.
68 - B. Borasoy , G. Muller 2000
The complete renormalization of the weak Lagrangian to chiral order q^2 in heavy baryon chiral perturbation theory is performed using heat kernel techniques. The results are compared with divergences appearing in the calculation of Feynman graphs for the nonleptonic hyperon decay Lambda -> p pi^- and an estimate for the size of the counterterm contributions to the s-wave amplitudes in nonleptonic hyperon decays is given.
Integral equations for meson-baryon scattering amplitudes are obtained by utilizing time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of baryon chiral perturbation theory. Effective potentials are defined as sums of two- particle irreducible contributions of time-ordered diagrams and the scattering amplitudes are obtained as solutions of integral equations. Ultraviolet renormalizability is achieved by solving integral equations for the leading order amplitude and including higher order corrections perturbatively. As an application of the developed formalism, pion-nucleon scattering is considered.
We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations wit h Symanzik glue and 2-fold stout-smeared staggered fermions, with pion masses varying from 135 MeV to 400 MeV, lattice scales between 0.7 GeV and 2.0 GeV, and m_s kept at its physical value. Furthermore, by excluding the lightest mass points, we are able to test the reliability of SU(2) chPT as a tool to extrapolate towards the physical point from higher pion masses.
We report on the recent studies of leading order baryon-baryon interactions in covariant baryon chiral perturbation theory. In the strangeness $S=0$ sector, one can achieve a rather good description of the Nijmegen $np$ phase shifts with angular mome nta $Jleq 1$, particularly the $^1S_0$ and $^3P_0$ partial waves, comparable with the next-to-leading order (NLO) heavy baryon approach. In the strangeness $S=-1$ hyperon-nucleon sector, the best fit of the 36 scattering data is similar to the sophisticated phenomenological models and the NLO heavy baryon approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا