ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating the probability of an observed string drawn i.i.d. from an unknown distribution. The key feature of our study is that the length of the observed string is assumed to be of the same order as the size of the underlying alphabet. In this setting, many letters are unseen and the empirical distribution tends to overestimate the probability of the observed letters. To overcome this problem, the traditional approach to probability estimation is to use the classical Good-Turing estimator. We introduce a natural scaling model and use it to show that the Good-Turing sequence probability estimator is not consistent. We then introduce a novel sequence probability estimator that is indeed consistent under the natural scaling model.
Consider a channel ${bf Y}={bf X}+ {bf N}$ where ${bf X}$ is an $n$-dimensional random vector, and ${bf N}$ is a Gaussian vector with a covariance matrix ${bf mathsf{K}}_{bf N}$. The object under consideration in this paper is the conditional mean of
In this paper, time delay estimation techniques robust to narrowband interference (NBI) are proposed. Owing to the deluge of wireless signal interference these days, narrowband interference is a common problem for communication and positioning system
It is proposed a class of statistical estimators $hat H =(hat H_1, ldots, hat H_d)$ for the Hurst parameters $H=(H_1, ldots, H_d)$ of fractional Brownian field via multi-dimensional wavelet analysis and least squares, which are asymptotically normal.
In this paper, we develop new fast and efficient algorithms for designing single/multiple unimodular waveforms/codes with good auto- and cross-correlation or weighted correlation properties, which are highly desired in radar and communication systems
The problem of finding good linear codes for joint source-channel coding (JSCC) is investigated in this paper. By the code-spectrum approach, it has been proved in the authors previous paper that a good linear code for the authors JSCC scheme is a co