ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-Based Direct Detection of Exoplanets with the Gemini Planet Imager (GPI)

133   0   0.0 ( 0 )
 نشر من قبل James R. Graham
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James R. Graham




اسأل ChatGPT حول البحث

The Gemini Planet (GPI) imager is an extreme adaptive optics system being designed and built for the Gemini Observatory. GPI combines precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. GPIs primary science goal is the direct detection and characterization of young, Jovian-mass exoplanets. For systems younger than 2 Gyr exoplanets more massive than 6 MJ and semimajor axes beyond 10 AU are detected with completeness greater than 50%. GPI will also discover faint debris disks, explore icy moons and minor planets in the solar system, reveal high dynamic range main-sequence binaries, and study mass loss from evolved stars. This white paper explains the role of GPI in exoplanet discovery and characterization and summarizes our recommendations to the NSF-NASA-DOE Astronomy and Astrophysics Advisory Committee ExoPlanet Task Force.



قيم البحث

اقرأ أيضاً

We model the detectability of exoplanets around stars in the Beta Pic Moving Group (BPMG) using the Gemini Planet Imager (GPI), a coronagraphic instrument designed to detect companions by imaging. Members of the BPMG are considered promising targets for exoplanet searches because of their youth (~12 MY) and proximity (median distance ~35 pc). We wrote a modeling procedure to generate hypothetical companions of given mass, age, eccentricity, and semi-major axis, and place them around BPMG members that fall within the V-band range of the GPI. We count as possible detections companions lying within the GPIs field of view and H-band fluxes that have a host-companion flux ratio placing them within its sensitivity. The fraction of companions that could be detected depends on their brightness at 12 Myr, and hence formation mechanism, and on their distribution of semi-major axes. We used brightness models for formation by disk instability and core-accretion. We considered the two extreme cases of the semi-major axis distribution - the log-normal distribution of the nearby F and G type stars and a power-law distribution indicated by the exoplanets detected by the radial velocity technique. We find that the GPI could detect exoplanets of all the F and G spectral type stars in the BPMG sample with a probability that depends on the brightness model and semi-major axis distribution. At spectral type K to M1, exoplanet detectability depends on brightness and hence distance of the host star. GPI will be able to detect the companions of M stars later than M1 only if they are closer than 10 pc. Of the four A stars in BPMG sample, only one has V-band brightness in the range of GPI; the others are too bright.
We present on-sky polarimetric observations with the Gemini Planet Imager (GPI) obtained at straight Cassegrain focus on the Gemini South 8-m telescope. Observations of polarimetric calibrator stars, ranging from nearly unpolarized to strongly polari zed, enable determination of the combined telescope and instrumental polarization. We find the conversion of Stokes $I$ to linear and circular instrumental polarization in the instrument frame to be $I rightarrow (Q_{rm IP}, U_{rm IP}, P_{rm IP}, V_{rm IP}) = (-0.037 pm 0.010%, +0.4338 pm 0.0075%, 0.4354 pm 0.0075%, -6.64 pm 0.56%)$. Such precise measurement of instrumental polarization enables $sim 0.1%$ absolute accuracy in measurements of linear polarization, which together with GPIs high contrast will allow GPI to explore scattered light from circumstellar disk in unprecedented detail, conduct observations of a range of other astronomical bodies, and potentially even study polarized thermal emission from young exoplanets. Observations of unpolarized standard stars also let us quantify how well GPIs differential polarimetry mode can suppress the stellar PSF halo. We show that GPI polarimetry achieves cancellation of unpolarized starlight by factors of 100-200, reaching the photon noise limit for sensitivity to circumstellar scattered light for all but the smallest separations at which the calibration for instrumental polarization currently sets the limit.
160 - Bruce Macintosh 2014
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field sp ectrograph with low spectral resolution but high spatial resolution. Every aspect of GPI has been tuned for maximum sensitivity to faint planets near bright stars. During first light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-sigma contrast of $10^6$ at 0.75 arcseconds and $10^5$ at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-second exposure with minimal post-processing. Beta Pictoris b is observed at a separation of $434 pm 6$ milli-arcseconds and position angle $211.8 pm 0.5$ deg. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of three improvement in most parameters over previous solutions. The planet orbits at a semi-major axis of $9.0^{+0.8}_{-0.4}$ AU near the 3:2 resonance with the previously-known 6 AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% posterior probability of a transit of the planet in late 2017.
The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, an d a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the hot-start model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.
We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI Data Reduction Pipeline (DRP) that significantly affected the determination of angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues, and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا