ﻻ يوجد ملخص باللغة العربية
Several representations of the exact cdf of the sum of squares of n independent gamma-distributed random variables Xi are given, in particular by a series of gamma distribution functions. Using a characterization of the gamma distribution by Laha, an expansion of the exact distribution of the sample variance is derived by a Taylor series approach with the former distribution as its leading term. In particular for integer orders alpha some further series are provided, including a convex combination of gamma distributions for alpha = 1 and nearly of this type for alpha > 1. Furthermore, some representations of the distribution of the angle Phi between (X1,...,Xn) and (1,...,1) are given by orthogonal series. All these series are based on the same sequence of easily computed moments of cos(Phi).
From a suitable integral representation of the Laplace transform of a positive semi-definite quadratic form of independent real random variables with not necessarily identical densities a univariate integral representation is derived for the cumulati
For a sample of absolutely bounded i.i.d. random variables with a continuous density the cumulative distribution function of the sample variance is represented by a univariate integral over a Fourier series. If the density is a polynomial or a trigon
A sum of observations derived by a simple random sampling design from a population of independent random variables is studied. A procedure finding a general term of Edgeworth asymptotic expansion is presented. The Lindeberg condition of asymptotic no
Herein, we review the properties of the Amoroso distribution, the natural unification of the gamma and extreme value distribution families. Over 50 distinct, named distributions (and twice as many synonyms) occur as special cases or limiting forms. C
Data observed at high sampling frequency are typically assumed to be an additive composite of a relatively slow-varying continuous-time component, a latent stochastic process or a smooth random function, and measurement error. Supposing that the late