ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of four-body interaction in a nuclear magnetic resonance quantum information processor

147   0   0.0 ( 0 )
 نشر من قبل Gui Lu Long
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four-body interaction plays an important role in many-body systems, and it can exhibit interesting phase transition behaviors. Historically it was the need to efficiently simulate quantum systems that lead the idea of a quantum computer. In this Letter, we report the experimental demonstration of a four-body interaction in a four- qubit nuclear magnetic resonance quantum information processor. The strongly modulating pulse is used to implement spin selective excitation. The results show a good agreement between theory and experiment.



قيم البحث

اقرأ أيضاً

A quantum circuit is introducted to describe the preparation of a labeled pseudo-pure state by mutiplet-component excitation scheme which has been experimentally implemented on a 4-qubit nuclear magnetic resonance quantum processor. Meanwhile, we the oretically analyze and numerically inverstigate the low-power selective single-pulse implementation of a controlled-rotation gate, which manifests its validity in our experiment. Based on the labeled pseudo-pure state prepared, a 3-qubit Bernstein-Vazirani algorithm has been experimentally demonstrated by spectral implementation. The answers of the computations are indentified from the split speak positions in the spectra of the observer spin, which are equivalent to projective measurements required by the algorithms.
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental stud y of an algorithm to find the low-lying spectrum of a Hamiltonian. While the number of elementary quantum gates does scale polynomially with the size of the system, it increases inversely to the desired error bound $epsilon$. Making such simulations robust to decoherence using fault-tolerance constructs requires an additional factor of $1/ epsilon$ gates. These constraints are illustrated by using a three qubit nuclear magnetic resonance system to simulate a pairing Hamiltonian, following the algorithm proposed by Wu, Byrd, and Lidar.
This paper describes recent progress using nuclear magnetic resonance (NMR) as a platform for implementing quantum information processing (QIP) tasks. The basic ideas of NMR QIP are detailed, examining the successes and limitations of liquid and soli d state experiments. Finally, a future direction for implementing quantum processors is suggested,utilizing both nuclear and electron spin degrees of freedom.
Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of $^{40}$Ca${^+}$ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm.
Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulat ion of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا