Let $ v$ be a smooth vector field on the plane, that is a map from the plane to the unit circle. We study sufficient conditions for the boundedness of the Hilbert transform operatorname H_{v, epsilon}f(x) := text{p.v.}int_{-epsilon}^ epsilon f(x-yv(x)) frac{dy}y where $ epsilon $ is a suitably chosen parameter, determined by the smoothness properties of the vector field. It is a conjecture, due to E.thinspace M.thinspace Stein, that if $ v$ is Lipschitz, there is a positive $ epsilon $ for which the transform above is bounded on $ L ^{2}$. Our principal result gives a sufficient condition in terms of the boundedness of a maximal function associated to $ v$. This sufficient condition is that this new maximal function be bounded on some $ L ^{p}$, for some $ 1<p<2$. We show that the maximal function is bounded from $ L ^{2}$ to weak $ L ^{2}$ for all Lipschitz maximal function. The relationship between our results and other known sufficient conditions is explored.