ﻻ يوجد ملخص باللغة العربية
We study how to incorporate CP violation in the Froggatt--Nielsen (FN) mechanism. To this end, we introduce non-renormalizable interactions with a flavor democratic structure to the fermion mass generation sector. It is found that at least two iso-singlet scalar fields with imposed a discrete symmetry are necessary to generate CP violation due to the appearance of the relative phase between their vacuum expectation values. In the simplest model, ratios of quark masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix including the CP violating phase are determined by the CKM element |V_{us}| and the ratio of two vacuum expectation values R=|R|e^{i*alpha} (a magnitude and a phase). It is demonstrated how the angles phi_i (i=1--3) of the unitarity triangle and the CKM off-diagonal elements |V_{ub}| and |V_{cb}| are predicted as a function of |V_{us}|, |R| and alpha. Although the predicted value of the CP violating phase does not agree with the experimental data within the simplest model, the basic idea of our scenario would be promising to construct a more realistic model of flavor and CP violation.
We present a doubly parametric extension of the standard Froggatt--Nielsen (FN) mechanism. As is well known, mass matrices of the up- and down-type quark sectors and the charged lepton sector in the standard model can be parametrized well by a parame
We introduce two anomaly fr
We study UV-complete Froggatt-Nielsen-like models for the generation of mass and mixing hierarchies, assuming that the integrated heavy fields are chiral with respect to an abelian Froggatt-Nielsen symmetry. It modifies the mixed anomalies with respe
We study Froggatt-Nielsen (FN) like flavor models with modular symmetry. The FN mechanism is a convincing solution to the flavor puzzle in quark sector. The FN mechanism requires an extra $U(1)$ gauge symmetry which is broken at high energy. Alternat
We propose UV-completions of Froggatt-Nielsen-Peccei-Quinn models of fermion masses and mixings with flavored axions, by incorporating heavy fields. Here, the $U(1)$ Froggatt-Nielsen symmetry is identified with the Peccei-Quinn symmetry to solve the