ﻻ يوجد ملخص باللغة العربية
The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T_c superconductivity in cuprates [N.M. Plakida et al., Phys. Rev. B, v. 51, 16599 (1995); JETP, v. 97, 331 (2003)] rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, an approximation procedure based on the identification and elimination of exponentially small quantities is described. It secures the reduction of the correlation order to GMFA-GF expressions.
The mean field Green function solution of the two-band singlet-hole Hubbard model for high-$Tsb{c}$ superconductivity in cuprates (Plakida, N.M. et al., Phys. Rev. B51, 16599 (1995), JETP 97, 331 (2003)) involves expressions of higher order correlati
We present a study of the attractive Hubbard model based on the dynamical mean field theory (DMFT) combined with the numerical renormalization group (NRG). For this study the NRG method is extended to deal with self-consistent solutions of effective
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$
Following the discovery of superconductivity in the cuprates and the seminal work by Anderson, the theoretical efforts to understand high-temperature superconductivity have been focusing to a large extent on a simple model: the one-band Hubbard model