ﻻ يوجد ملخص باللغة العربية
We propose a Hamiltonian formalism for a generalized Friedmann-Roberson-Walker cosmology model in the presence of both a variable equation of state (EOS) parameter $w(a)$ and a variable cosmological constant $Lambda(a)$, where $a$ is the scale factor. This Hamiltonian system containing 1 degree of freedom and without constraint, gives Friedmann equations as the equation of motion, which describes a mechanical system with a variable mass object moving in a potential field. After an appropriate transformation of the scale factor, this system can be further simplified to an object with constant mass moving in an effective potential field. In this framework, the $Lambda$ cold dark matter model as the current standard model of cosmology corresponds to a harmonic oscillator. We further generalize this formalism to take into account the bulk viscosity and other cases. The Hamiltonian can be quantized straightforwardly, but this is different from the approach of the Wheeler-DeWitt equation in quantum cosmology.
We present a superfield construction of Hamiltonian quantization with N=2 supersymmetry generated by two fermionic charges Q^a. As a byproduct of the analysis we also derive a classically localized path integral from two fermionic objects Sigma^a tha
An action principle that applies uniformly to any number N of supercharges is proposed. We perform the reduction to the N=0 partition function by integrating out superpartner fields. As a new feature for theories of extended supersymmetry, the canoni
The unfree gauge symmetry implies that gauge variation of the action functional vanishes provided for the gauge parameters are restricted by the differential equations. The unfree gauge symmetry is shown to lead to the global conserved quantities who
A Friedmann like cosmological model in Einstein-Cartan framework is studied when the torsion function is assumed to be proportional to a single $phi(t)$ function coming just from the spin vector contribution of ordinary matter. By analysing four diff
In the present paper the Yang-Mills theory in the first order formalism is studied. On classical level the first order formulation is equivalent to the standard second order description of the Yang-Mills theory. It is proven that both formulations remain equivalent on quantum level as well.