ترغب بنشر مسار تعليمي؟ اضغط هنا

Sum-over-states vs quasiparticle pictures of coherent correlation spectroscopy of excitons in semiconductors; femtosecond analogues of multidimensional NMR

374   0   0.0 ( 0 )
 نشر من قبل Shaul Mukamel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional correlation spectroscopy (2DCS) based on the nonlinear optical response of excitons to sequences of ultrafast pulses, has the potential to provide some unique insights into carrier dynamics in semiconductors. The most prominent feature of 2DCS, cross peaks, can best be understood using a sum-over-states picture involving the many-body eigenstates. However, the optical response of semiconductors is usually calculated by solving truncated equations of motion for dynamical variables, which result in a quasiparticle picture. In this work we derive Greens function expressions for the four wave mixing signals generated in various phase-matching directions and use them to establish the connection between the two pictures. The formal connection with Frenkel excitons (hard-core bosons) and vibrational excitons (soft-core bosons) is pointed out.



قيم البحث

اقرأ أيضاً

We propose two dimensional x-ray coherent correlation spectroscopy (2DXCS) for the study of interactions between core-electron and valence transitions. This technique might find experimental applications in the future when very high intensity x-ray s ources become available. Spectra obtained by varying two delay periods between pulses show off-diagonal cross-peaks induced by coupling of core transitions of two different types. Calculations of the N1s and O1s signals of aminophenol isomers illustrate how novel information about many-body effects in electronic structure and excitations of molecules can be extracted from these spectra.
Rephasing and non-rephasing two-dimensional coherent spectra map the anti-crossing associated with normal-mode splitting in a semiconductor microcavity. For a 12-meV detuning range near zero detuning, it is observed that there are two diagonal featur es related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the lineshape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton- and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated (and invert) at small positive detuning, as the lower polariton branch crosses the bound biexciton energy determined from negative detuning spectra.
Reliable and precise measurements of the relative energy of band edges in semiconductors are needed to determine band gaps and band offsets, as well as to establish the band diagram of devices and heterostructures. These measurements are particularly important in the field of two-dimensional materials, in which many new semiconducting systems are becoming available through exfoliation of bulk crystals. For two-dimensional semiconductors, however, commonly employed techniques suffer from difficulties rooted either in the physics of these systems, or of technical nature. The very large exciton binding energy, for instance, prevents the band gap to be determined from a simple spectral analysis of photoluminescence, and the limited lateral size of atomically thin crystals makes the use of conventional scanning tunneling spectroscopy cumbersome. Ionic gate spectroscopy is a newly developed technique that exploits ionic gate field-effect transistors to determine quantitatively the relative alignment of band edges of two-dimensional semiconductors in a straightforward way, directly from transport measurements (i.e., from the transistor electrical characteristics). The technique relies on the extremely large geometrical capacitance of ionic gated devices that -- under suitable conditions -- enables a change in gate voltage to be directly related to a shift in chemical potential. Here we present an overview of ionic gate spectroscopy, and illustrate its relevance with applications to different two-dimensional semiconducting transition metal dichalcogenides and van der Waals heterostructures.
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emissi on lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (> 6 ${mu}$s) and polarization lifetimes (> 100 ns). Resonant excitation of the free inter- and intra-valley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.
Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconductors with a linear-dichroic light-matter interaction and a widely-tunable direct-band gap in the infrared frequency range. Despite rece nt theoretical predictions of strongly-bound excitons with unique properties, it remains experimentally challenging to probe the excitonic quasiparticles due to the severe oxidation during device fabrication. In this study, we report observation of strongly-bound excitons and trions with highly-anisotropic optical properties in intrinsic bilayer phosphorene, which are protected from oxidation by encapsulation with hexagonal boron nitride (hBN), in a field-effect transistor (FET) geometry. Reflection contrast and photoluminescence spectroscopy clearly reveal the linear-dichroic optical spectra from anisotropic excitons and trions in the hBN-encapsulated bilayer phosphorene. The optical resonances from the exciton Rydberg series indicate that the neutral exciton binding energy is over 100 meV even with the dielectric screening from hBN. The electrostatic injection of free holes enables an additional optical resonance from a positive trion (charged exciton) ~ 30 meV below the optical bandgap of the charge-neutral system. Our work shows exciting possibilities for monolayer and few-layer phosphorene as a platform to explore many-body physics and novel photonics and optoelectronics based on strongly-bound excitons with two-fold anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا