ﻻ يوجد ملخص باللغة العربية
We study the potential of the CNGS beam in constraining the parameter space of a model with one sterile neutrino separated from three active ones by an $mathcal{O}(eVq)$ mass-squared difference, $Dmq_Sbl$. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the channel with the largest potential to constrain the sterile neutrino parameter space at the CNGS beam is $ u_mu to u_tau$. The reason for that is twofold: first, the active-sterile mixing angle that governs this oscillation is the less constrained by present experiments; second, this is the signal for which both OPERA and ICARUS have been designed, and thus benefits from an extremely low background. In our analysis we also took into account $ u_mu to u_e$ oscillations. We find that the CNGS potential to look for sterile neutrinos is limited with nominal intensity of the beam, but it is significantly enhanced with a factor 2 to 10 increase in the neutrino flux. Data from both channels allow us, in this case, to constrain further the four-neutrino model parameter space. Our results hold for any value of $Dmq_Sbl gtrsim 0.1 eVq$, textit{i.e.} when oscillations driven by this mass-squared difference are averaged. We have also checked that the bound on $theta_{13}$ that can be put at the CNGS is not affected by the possible existence of sterile neutrinos.
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing
Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe t
DANSS is a highly segmented 1~m${}^3$ plastic scintillator detector. Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS detector is placed under an industrial 3.1~$mathrm{GW_{th}}$ reactor of the Kalinin Nuclear
We study the optimization of a green-field, two-baseline reactor experiment with respect to the sensitivity for electron antineutrino disappearance in search of a light sterile neutrino. We consider both commercial and research reactors and identify