ﻻ يوجد ملخص باللغة العربية
We investigate the possibility of electroweak phase transition in the minimal supersymmetric standard model (MSSM) with an extra $U(1)$. This model has two Higgs doublets and a singlet, in addition to a singlet exotic quark superfield. We find that at the one-loop level this model may accommodate the electroweak phase transitions that are strongly first-order in a reasonably large region of the parameter space. In the parameter region where the phase transitions take place, we observe that the lightest scalar Higgs boson has a smaller mass when the strength of the phase transition becomes weaker. Also, the other three heavier neutral Higgs bosons get more large masses when the strength of the phase transition becomes weaker.
We study that a minimal supersymmetric standard model with an extra $U(1)$ gauge symmetry may accommodate the explicit CP violation at the one-loop level through radiative corrections. This model is CP conserving at the tree level and cannot realize
The possibility of a strongly first-order electroweak phase transition is established in the minimal supersymmetric standard model with an extra $U(1)$, where a nontrivial CP violating phase is introduced in its Higgs sector. We find that there is a
We propose a simple extension of the Standard Model (SM) by adding an extra U(1) symmetry which is hidden from the SM sector. Such a hidden U(1) has not been considered before, and its existence at the TeV scale can be explored at the LHC. This hidde
In the $U(1)_X$ extension of the minimal supersymmetric standard model, we study a two step phase transition for the universe. The first step happens at high temperature from origin to z coordinate axis. The second step is the electroweak phase trans
The electroweak phase transition in GUT inspired $SO(5) times U(1) times SU(3)$ gauge-Higgs unification is shown to be of weakly first-order and occurs at $T = T_c^{ rm EW} sim 163 ,$GeV, which is very similar to the behavior in the standard model in