ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray emitting AGN and GLAST

108   0   0.0 ( 0 )
 نشر من قبل Paolo Padovani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Padovani




اسأل ChatGPT حول البحث

I describe the different classes of Active Galactic Nuclei (AGN) and the basic tenets of unified schemes. I then review the properties of the extragalactic sources detected in the GeV and TeV bands, showing that the vast majority of them belong to the very rare blazar class. I further discuss the kind of AGN GLAST is likely to detect, making some predictions going from the obvious to the likely, all the way to the less probable.



قيم البحث

اقرأ أيضاً

We introduce the GENJI program (Gamma-ray Emitting Notable AGN Monitoring by Japanese VLBI), which is a monitoring program of gamma-ray bright AGNs with the VERA array (VLBI Exploration of Radio Astrometry). The GENJI programme aims a dense monitorin g at 22 GHz towards the $gamma$-ray emitting active galactic nuclei (AGNs) to investigate the radio time variation of the core and possible ejection of new radio component, motion of jets, and their relation with the emission at other wavelengths especially in $gamma$-rays. Currently we are monitoring 8 $gamma$-ray-emitting notable AGNs (DA 55, 3C 84, M 87, PKS 1510-089, DA 406, NRAO 530, BL Lac, 3C 454.3) about once every two weeks. This programme is promising to trace the trend of radio time variation on shorter timescale than conventional VLBI monitoring programme and to provide complimentary data with them (e.g., MOJAVE, Boston University Blazar Project). In particular, we successfully coordinated quick follow-up observations after the GeV $gamma$-ray flare in NRAO 530 and 3C 454.3 reported by the Fermi Gamma-ray Space Telescope. Here we present the initial results of morphology and light curves for the first 7-month operation.
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify, resolve, and study the high energy gamma-ray sky. Compared to previous instruments the telescope will have greatly improved sensitivity and ability to localize gamma-ray poin t sources. The ability to resolve the location and identity of EGRET unidentified sources is described. We summarize the current knowledge of the high energy gamma-ray sky and discuss the astrophysics of known and some prospective classes of gamma-ray emitters. In addition, we also describe the potential of GLAST to resolve old puzzles and to discover new classes of sources.
166 - F. DAmmando 2015
PKS 0521-36 is an Active Galactic Nucleus (AGN) with uncertain classification. We investigate the properties of this source from radio to gamma rays. The broad emission lines in the optical and UV bands and steep radio spectrum indicate a possible cl assification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521-36 shows a knotty structure similar to misaligned AGN. The core dominance and the gamma-ray properties are similar to those estimated for other SSRQ and BLRG detected in gamma rays, suggesting an intermediate viewing angle with respect to the observer. In this context the flaring activity detected from this source by Fermi-LAT between 2010 June and 2012 February is very intriguing. We discuss the gamma-ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles theta_v = 6, 15, and 20 deg. We obtain a good fit for the the first two cases, but the SED obtained with theta_v = 15 deg if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (about 100) the inverse Compton component. This suggests that a viewing angle between 6 and 15 deg is preferred, with the rapid variability observed during gamma-ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521-36 is the misaligned counterpart of a synchrotron-dominated blazar.
We have carried out a Chandra X-ray and multi-frequency radio VLBA study of the AGN TXS 0128+554, which is associated with the Fermi gamma-ray source 4FGL J0131.2+5547. The AGN is unresolved in a target 19.3 ks Chandra image, and its spectrum is well fit by a simple absorbed power law model, with no distinguishable spectral features. Its relatively soft X-ray spectrum compared to other CSOs may be indicative of a thermal emission component, for which we were able to obtain an upper temperature limit of kT = 0.08 keV. The compact radio morphology and measured advance speed of 0.32c +- 0.07c indicate a kinematic age of only 82 y +- 17 y, placing TXS 0128+554 among the youngest members of the compact symmetric object (CSO) class. The lack of compact, inverted spectrum hotspots and an emission gap between the bright inner jet and outer radio lobe structure indicate that the jets have undergone episodic activity, and were re-launched a decade ago. The predicted gamma-ray emission from the lobes, based on an inverse Compton-emitting cocoon model, is three orders of magnitude below the observed Fermi LAT flux. A comparison to other Fermi-detected and non-Fermi detected CSOs with redshift z<0.1 indicates that the gamma-ray emission likely originates in the inner jet/core region, and that nearby, recently launched AGN jets are primary candidates for detection by the Fermi LAT instrument.
118 - Paul Nulsen 2003
The process that prevents the deposition of cooled gas in cooling flows must rely on feedback in order to maintain gas with short cooling times, while preventing the bulk of the gas from cooling to low temperatures. The primary candidate for the feed back mechanism is the accretion of cooled and cooling gas by an active galactic nucleus (AGN). Despite some difficulties with this model, the high incidence of central radio sources in cooling flows and the common occurrence of radio lobe cavities, together, support this view. The Bondi accretion rate for the intracluster gas onto the AGN depends on the gas properties only through its specific entropy and that is governed directly by competition between heating and cooling. This provides a viable link for the feedback process. It is argued that the mass accreted between outbursts by the central AGN is only sensitive to the mass of the black hole and the gas temperature. Bondi accretion by an AGN leads to a simple expression for outburst energy that can be tested against observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا