Eternal inflation and localization on the landscape


الملخص بالإنكليزية

We model the essential features of eternal inflation on the landscape of a dense discretuum of vacua by the potential $V(phi)=V_{0}+delta V(phi)$, where $|delta V(phi)|ll V_{0}$ is random. We find that the diffusion of the distribution function $rho(phi,t)$ of the inflaton expectation value in different Hubble patches may be suppressed due to the effect analogous to the Anderson localization in disordered quantum systems. At $t to infty$ only the localized part of the distribution function $rho (phi, t)$ survives which leads to dynamical selection principle on the landscape. The probability to measure any but a small value of the cosmological constant in a given Hubble patch on the landscape is exponentially suppressed at $tto infty$.

تحميل البحث