ترغب بنشر مسار تعليمي؟ اضغط هنا

Some aspects of the nonperturbative renormalization of the phi^4 model

158   0   0.0 ( 0 )
 نشر من قبل J. Kaupuzs
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Kaupuzs




اسأل ChatGPT حول البحث

A nonperturbative renormalization of the phi^4 model is considered. First we integrate out only a single pair of conjugated modes with wave vectors +/- q. Then we are looking for the RG equation which would describe the transformation of the Hamiltonian under the integration over a shell Lambda - d Lambda < k < Lambda, where d Lambda -> 0. We show that the known Wegner--Houghton equation is consistent with the assumption of a simple superposition of the integration results for +/- q. The renormalized action can be expanded in powers of the phi^4 coupling constant u in the high temperature phase at u -> 0. We compare the expansion coefficients with those exactly calculated by the diagrammatic perturbative method, and find some inconsistency. It causes a question in which sense the Wegner-Houghton equation is really exact.



قيم البحث

اقرأ أيضاً

138 - F. Rose , F. Benitez , F. Leonard 2016
Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--Mendez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi olet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilsons RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.
We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared r egulator, we find a transition between a high-temperature (disordered) phase and a low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the transition. In particular, we find the anomalous dimension $eta(Tkt)simeq 0.24$ and the stiffness jump $rho_s(Tkt^-)simeq 0.64$ at the transition temperature $Tkt$, in very good agreement with the exact results $eta(Tkt)=1/4$ and $rho_s(Tkt^-)=2/pi$, as well as an essential singularity of the correlation length in the high-temperature phase as $Tto Tkt$.
80 - R. Daviet , N. Dupuis 2018
We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the Lukyanov-Zamolodchikov conjecture for the expectation value $langle e^{frac{i}{2}nbetavarphi}rangle$ of the exponential fields in the massive phase ($n$ is integer and $2pi/beta$ denotes the periodicity of the potential in the sine-Gordon model). We find that the minimum of the relative and absolute disagreements between the FRG results and the conjecture is smaller than 0.01.
114 - J. Kaupuzs 2015
Critical two-point correlation functions in the continuous and lattice phi^4 models with scalar order parameter phi are considered. We show by different non-perturbative methods that the critical correlation functions <phi^n(0) phi^m(x)> are proporti onal to <phi(0) phi(x)> at |x| --> infinity for any positive odd integers n and m. We investigate how our results and some other results for well-defined models can be related to the conformal field theory (CFT), considered by Rychkov and Tan, and reveal some problems here. We find this CFT to be rather formal, as it is based on an ill-defined model. Moreover, we find it very unlikely that the used there equation of motion really holds from the point of view of statistical physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا