ترغب بنشر مسار تعليمي؟ اضغط هنا

PAH emission and star formation in the host of the z~2.56 Cloverleaf QSO

384   0   0.0 ( 0 )
 نشر من قبل Dieter Lutz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of the 6.2micron and 7.7micron infrared `PAH emission features in the spectrum of a high redshift QSO, from the Spitzer-IRS spectrum of the Cloverleaf lensed QSO (H1413+117, z~2.56). The ratio of PAH features and rest frame far-infrared emission is the same as in lower luminosity star forming ultraluminous infrared galaxies and in local PG QSOs, supporting a predominantly starburst nature of the Cloverleafs huge far-infrared luminosity (5.4E12 Lsun, corrected for lensing). The Cloverleafs period of dominant QSO activity (Lbol ~ 7E13 Lsun) is coincident with an intense (star formation rate ~1000 Msun/yr) and short (gas exhaustion time ~3E7yr) star forming event.



قيم البحث

اقرأ أيضاً

We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar (z=2.56) based on observations with the IRAM Plateau de Bure Interferometer. This is the first clear detection of emission from this radical at high redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4 cm^{-3}) within star-forming molecular clouds, in particular in regions where the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used as a diagnostic for the relative importance of photodissociation regions (PDRs) in a source, and as a sensitive probe of optical depth, the radiation field, and photochemical processes. We derive a lensing-corrected CN(N=3-2) line luminosity of L(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between CN luminosity and far-infrared luminosity falls within the scatter of the same relationship found for low-z (ultra-) luminous infrared galaxies. Combining our new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and assuming thermal excitation for all transitions, we find a CO/CN luminosity ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However, we find that the CN(N=3-2) line is likely only subthermally excited, implying that those ratios may only provide upper limits for the intrinsic 1-0 line luminosity ratios. We conclude that, in combination with other molecular gas tracers like CO, HCN, and HCO+, CN is an important probe of the physical conditions and chemical composition of dense molecular environments at high redshift.
We report the first detection of hydrogen fluoride (HF) toward a high redshift quasar. Using the Caltech Submillimeter Observatory (CSO) we detect the HF J = 1 - 0 transition in absorption toward the Cloverleaf, a broad absorption line (BAL) quasi-st ellar object (QSO) at z=2.56. The detection is statistically significant at the ~ 6 sigma level. We estimate a lower limit of 4 times 1014 cm-2 for the HF column density and using a previous estimate of the hydrogen column density, we obtain a lower limit of 1.7 times 10-9 for the HF abundance. This value suggests that, assuming a Galactic N(HF)/NH ratio, HF accounts for at least ~10% of the fluorine in the gas phase along the line of sight to the Cloverleaf quasar. This observation corroborates the prediction that HF should be a good probe of the molecular gas at high redshift. Measurements of the HF abundance as a function of redshift are urgently needed to better constrain the fluorine nucleosynthesis mechanism(s).
Many of the conditions that are necessary for starbursts appear to be important in the triggering of QSOs. However, it is still debatable whether starbursts are ubiquitously present in galaxies harboring QSOs. In this paper we review our current know ledge from observations of the role of starbursts in different types of QSOs. Post-starburst stellar populations are potentially present in the majority of QSO hosts. QSOs with far-infrared colors similar to those of ultraluminous infrared galaxies invariably reside in merging galaxies that have interaction-induced starbursts of a few hundred Myr or less. Similar, but dramatically more luminous post-starburst populations are found in the recently discovered class of QSOs known as post-starburst QSOs, or Q+As. Both of these classes, however, comprise only a small fraction (10-15%) of the total QSO population. The so-called red QSOs generally suffer from strong extinction at optical wavelengths, making them ideal candidates for the study of hosts. Their stellar populations typically show a post-starburst component as well, though with a larger range of ages. Finally, optical classical QSO hosts show traces of major star formation episodes (typically involving >10% of the mass of the stellar component) in the more distant past (1-2 Gyr). These starbursts appear to be linked to past merger events. It remains to be determined whether these mergers were also responsible for triggering the QSO activity that we observe today.
We report an optical detection of an extended structure around a QSO at z=6.43 (CFHQSJ2329-0301, the highest redshift QSO currently known) in deep z and z_r-band images of the Subaru/Suprime-Cam. After a careful PSF (QSO) subtraction, a structure in the z-band extends more than 4 on the sky (R_e=11 kpc), and thus, is well-resolved (16sigma detection). The PSF-subtracted z_r-band structure is in a similar shape to that in the z-band, but less significant with a 3 sigma detection. In the z-band, a radial profile of the QSO+host shows a clear excess over that of the averaged PSF in 0.8-3 radius. Since the z-band includes a Lya emission at z=6.43, the z flux is perhaps a mixture of the host (continuum light) and its Lya emission, whereas the z_r-band flux is from the host. Through a SED modeling, we estimate 40% of the PSF-subtracted z-band light is from the host (continuum) and 60% is from Lya emission. The absolute magnitude of the host is M_{1450}=-23.9 (c.f. M_{1450}=-26.4 for the QSO). A lower limit of the SFR(Lya) is 1.6 Msun yr^{-1} with stellar mass ranging 6.2 x 10^8 to 1.1 x 10^10 Msun when 100 Myrs of age is assumed. The detection shows that a luminous QSO is already harbored by a large, star-forming galaxy in the early Universe only after ~840 Myr after the big bang. The host may be a forming giant galaxy, co-evolving with a super massive black hole.
70 - K. Jahnke 2001
We investigate multicolour imaging data of a complete sample of low redshift (z<0.2) QSO host galaxies. The sample was imaged in four optical (BVRi) and three near-infrared bands (JHKs), and in addition spectroscopic data is available for a majority of the objects. We extract host luminosities for all bands by means of two-dimensional modeling of galaxy and nucleus. Optical and optical-to-NIR colours agree well with the average colours of inactive early type galaxies. The six independent colours are used to fit population synthesis models. We assess the presence of young populations in the hosts for which evidence shows to be very weak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا