ترغب بنشر مسار تعليمي؟ اضغط هنا

New simple modular Lie superalgebras as generalized prolongs

207   0   0.0 ( 0 )
 نشر من قبل Sofiane Bouarroudj
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Over algebraically closed fields of characteristic p>2, prolongations of the simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. Several new simple Lie superalgebras are discovered, serial and exceptional, including superBrown and superMelikyan superalgebras. Simple Lie superalgebras with Cartan matrix of rank 2 are classified.



قيم البحث

اقرأ أيضاً

171 - Dimitry Leites 2007
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad ed by integers and only some of the non-graded ones). The conjecture is backed up with the latest results computationally most difficult of which are obtained with the help of Grozmans software package SuperLie.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indec omposable Cartan matrix in characteristic 2 (and in other characteristics for completeness of the picture). We correct the currently available in the literature notions of Chevalley generators and Cartan matrix in the modular and super cases, and an auxiliary notion of the Dynkin diagram. In characteristic 2, the defining relations of simple classical Lie algebras of the A, D, E types are not only Serre ones; these non-Serre relations are same for Lie superalgebras with the same Cartan matrix and any distribution of parities of the generators. Presentations of simple orthogonal Lie algebras having no Cartan matrix are also given..
In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological properties governed by the Bott-Borel-Weil theorem involving the zero component of the Lie superalgebra in conjunction with the odd roots. These results are later used to verify an open conjecture given by Boe, Kujawa and Nakano pertaining to the equality of various support varieties.
412 - Arun S. Kannan 2021
We present new constructions of several of the exceptional simple Lie superalgebras in characteristic $p = 3$ and $p = 5$ by considering the images of exceptional Lie algebras with a nilpotent derivation under the semisimplification functor from $mat hrm{Rep} mathbf{alpha}_p$ to the Verlinde category $mathrm{Ver}_p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا