ﻻ يوجد ملخص باللغة العربية
Over algebraically closed fields of characteristic p>2, prolongations of the simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. Several new simple Lie superalgebras are discovered, serial and exceptional, including superBrown and superMelikyan superalgebras. Simple Lie superalgebras with Cartan matrix of rank 2 are classified.
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st
For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indec
In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological
We present new constructions of several of the exceptional simple Lie superalgebras in characteristic $p = 3$ and $p = 5$ by considering the images of exceptional Lie algebras with a nilpotent derivation under the semisimplification functor from $mat