ﻻ يوجد ملخص باللغة العربية
We report hot-wire measurements performed in two very different, co- and counter-rotating flows, in normal and superfluid helium at 1.6 K, 2 K, and 2.3 K. As recently reported, the power spectrum of the hot-wire signal in superfluid flows exhibits a significant bump at high frequency (Diribarne et al. [1]). We confirm that the bump frequency does not depend significantly on the temperature and further extend the previous analysis of the velocity dependence of the bump, over more than one decade of velocity. The main result is that the bump frequency depends on the turbulence intensity of the flow, and that using the turbulent Reynolds number rather than the velocity as a control parameter collapses results from both co- and counter-rotating flows. The vortex shedding model previously proposed, in its current form, does not account for this observation. This suggests that the physical origin of the bump is related to the small scale turbulence properties of the flow. We finally propose some qualitative physical mechanism by which the smallest structures of the flow, at intervortex distance, could affect the heat flux of the hot-wire.
We obtain the von Karman-Howarth relation for the stochastically forced three-dimensional Hall-Vinen-Bekharvich-Khalatnikov (3D HVBK) model of superfluid turbulence in Helium ($^4$He) by using the generating-functional approach. We combine direct num
The results of experimental and theoretical studies of the parametric decay instability of capillary waves on the surface of superfluid helium He-II are reported. It is demonstrated that in a system of turbulent capillary waves low-frequency waves ar
We report on a combined theoretical and numerical study of counterflow turbulence in superfluid $^{4}$He in a wide range of parameters. The energy spectra of the velocity fluctuations of both the normal-fluid and superfluid components are strongly an
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for ther
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy f