ترغب بنشر مسار تعليمي؟ اضغط هنا

Transfer learning of language-independent end-to-end ASR with language model fusion

77   0   0.0 ( 0 )
 نشر من قبل Hirofumi Inaguma
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.



قيم البحث

اقرأ أيضاً

The attention-based end-to-end (E2E) automatic speech recognition (ASR) architecture allows for joint optimization of acoustic and language models within a single network. However, in a vanilla E2E ASR architecture, the decoder sub-network (subnet), which incorporates the role of the language model (LM), is conditioned on the encoder output. This means that the acoustic encoder and the language model are entangled that doesnt allow language model to be trained separately from external text data. To address this problem, in this work, we propose a new architecture that separates the decoder subnet from the encoder output. In this way, the decoupled subnet becomes an independently trainable LM subnet, which can easily be updated using the external text data. We study two strategies for updating the new architecture. Experimental results show that, 1) the independent LM architecture benefits from external text data, achieving 9.3% and 22.8% relative character and word error rate reduction on Mandarin HKUST and English NSC datasets respectively; 2)the proposed architecture works well with external LM and can be generalized to different amount of labelled data.
Despite the significant progress in end-to-end (E2E) automatic speech recognition (ASR), E2E ASR for low resourced code-switching (CS) speech has not been well studied. In this work, we describe an E2E ASR pipeline for the recognition of CS speech in which a low-resourced language is mixed with a high resourced language. Low-resourcedness in acoustic data hinders the performance of E2E ASR systems more severely than the conventional ASR systems.~To mitigate this problem in the transcription of archives with code-switching Frisian-Dutch speech, we integrate a designated decoding scheme and perform rescoring with neural network-based language models to enable better utilization of the available textual resources. We first incorporate a multi-graph decoding approach which creates parallel search spaces for each monolingual and mixed recognition tasks to maximize the utilization of the textual resources from each language. Further, language model rescoring is performed using a recurrent neural network pre-trained with cross-lingual embedding and further adapted with the limited amount of in-domain CS text. The ASR experiments demonstrate the effectiveness of the described techniques in improving the recognition performance of an E2E CS ASR system in a low-resourced scenario.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl etely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be i nferred on-the-fly with minimum latency. Furthermore, in voice-activated smart assistant systems, language identity is also required for downstream processing of ASR output. In this paper, we introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification (LID) using the recurrent neural network transducer (RNN-T) architecture. On the input side, embeddings from pretrained acoustic-only LID classifiers are used to guide RNN-T training and inference, while on the output side, language targets are jointly modeled with ASR targets. The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India. Experiments show that for English-Spanish, the bilingual joint ASR-LID architecture matches monolingual ASR and acoustic-only LID accuracies. For the more challenging (owing to within-utterance code switching) case of English-Hindi, English ASR and LID metrics show degradation. Overall, in scenarios where users switch dynamically between languages, the proposed architecture offers a promising simplification over running multiple monolingual ASR models and an LID classifier in parallel.
246 - Yao Qian , Ximo Bian , Yu Shi 2021
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c orresponding semantics may not always be available or sufficient to train an E2E SLU model in a real production environment. In this paper, we propose to unify a well-optimized E2E ASR encoder (speech) and a pre-trained language model encoder (language) into a transformer decoder. The unified speech-language pre-trained model (SLP) is continually enhanced on limited labeled data from a target domain by using a conditional masked language model (MLM) objective, and thus can effectively generate a sequence of intent, slot type, and slot value for given input speech in the inference. The experimental results on two public corpora show that our approach to E2E SLU is superior to the conventional cascaded method. It also outperforms the present state-of-the-art approaches to E2E SLU with much less paired data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا