No Arabic abstract
KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3-m telescope from February to November of 2012, and obtained complementary V-band images from five other ground-based telescopes. We measured the H-beta light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method, and found rest-frame lags of lag_CCF = 13.53 (+2.03, -2.32) days and lag_JAVELIN = 13.15 (+1.08, -1.00) days. The H-beta root-mean-square line profile has a width of sigma_line = 770 +/- 49 km/s. Combining these two results and assuming a virial scale factor of f = 5.13, we obtained a virial estimate of M_BH = 8.06 (+1.59, -1.72) x 10^6 M_sun for the mass of the central black hole and an Eddington ratio of L/L_Edd ~ 0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation mapping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
We present the accretion disk size estimates for a sample of 19 active galactic nuclei (AGN) using the optical $g$, $r$, and $i$ band light curves obtained from the Zwicky Transient Facility (ZTF) survey. All the AGN have reliable supermassive black hole (SMBH) mass estimates based on previous reverberation mapping measurements. The multi-band light curves are cross-correlated, and the reverberation lag is estimated using the Interpolated Cross-Correlation Function (ICCF) method and the Bayesian method using the {sc javelin} code. As expected from the disk reprocessing arguments, the $g-r$ band lags are shorter than the $g-i$ band lags for this sample. The interband lags for all, but 5 sources, are larger than the sizes predicted from the standard Shakura Sunyaev (SS) analytical model. We fit the light curves directly using a thin disk model implemented through the {sc javelin} code to get the accretion disk sizes. The disk sizes obtained using this model are on an average 3.9 times larger than the prediction based on the SS disk model. We find a weak correlation between the disk sizes and the known physical parameters, namely, the luminosity and the SMBH mass. In the near future, a large sample of AGN covering a range of luminosity and SMBH mass from large photometric surveys would be helpful in a better understanding of the structure and physics of the accretion disk.
The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our dataset covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of 4 in the U-band continuum and a factor of 2 in the H-beta line. Using standard cross-correlation techniques, we find that H-beta and H-gamma lag the V-band continuum by tau_cen = 10.64(-0.93,+0.82) and 8.43(-1.28,+1.30) days, respectively, while the lag of He II 4686 is unresolved. The H-beta line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f=5.25, the virial estimate of the black hole mass is (3.2+-0.5)*10^7 solar masses. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of broad-line region structure and dynamics.
Swift intensive accretion disk reverberation mapping of four AGN yielded light curves sampled $sim$200-350 times in 0.3-10 keV X-ray and six UV/optical bands. Uniform reduction and cross-correlation analysis of these datasets yields three main results: 1) The X-ray/UV correlations are much weaker than those within the UV/optical, posing severe problems for the lamp-post reprocessing model in which variations in a central X-ray corona drive and power those in the surrounding accretion disk. 2) The UV/optical interband lags are generally consistent with $ tau propto lambda^{4/3} $ as predicted by the centrally illuminated thin accretion disk model. While the average interband lags are somewhat larger than predicted, these results alone are not inconsistent with the thin disk model given the large systematic uncertainties involved. 3) The one exception is the U band lags, which are on average a factor of $sim$2.2 larger than predicted from the surrounding band data and fits. This excess appears due to diffuse continuum emission from the broad-line region (BLR). The precise mixing of disk and BLR components cannot be determined from these data alone. The lags in different AGN appear to scale with mass or luminosity. We also find that there are systematic differences between the uncertainties derived by javelin vs. more standard lag measurement techniques, with javelin reporting smaller uncertainties by a factor of 2.5 on average. In order to be conservative only standard techniques were used in the analyses reported herein.
The determination of the size and geometry of the broad line region (BLR) in active galactic nuclei is one of the major ingredients for determining the mass of the accreting black hole. This can be done by determining the delay between the optical continuum and the flux reprocessed by the BLR, in particular via the emission lines. We propose here that the delay between polarized and unpolarized light can also be used in much the same way to constrain the size of the BLR; we check that meaningful results can be expected from observations using this technique. We use our code STOKES for performing polarized radiative transfer simulations. We determine the response of the central source environment (broad line region, dust torus, polar wind) to fluctuations of the central source that are randomly generated; we then calculate the cross correlation between the simulated polarized flux and the total flux to estimate the time delay that would be provided by observations using the same method. We find that the broad line region is the main contributor to the delay between the polarized flux and the total flux; this delay is independent on the observation wavelength. This validates the use of polarized radiation in the optical/UV band to estimate the geometrical properties of the broad line region in type I AGNs, in which the viewing angle is close to pole-on and the BLR is not obscured by the dust torus.