Do you want to publish a course? Click here

Electronic Structure and Bonding in Epitaxially Stabilized Cubic Iron Silicides

47   0   0.0 ( 0 )
 Added by Kurt Mader
 Publication date 1993
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an ab initio full-potential linearized augmented plane-wave (FLAPW) study of the structural and electronic properties of the two bulk unstable compounds FeSi (CsCl structure) and FeSi$_2$ (CaF$_2$ structure) which have recently been grown by molecular beam epitaxy on Si(111). We obtain equilibrium bulk lattice constants of 2.72 AA and 5.32 AA for FeSi and FeSi$_2$, respectively. The density of states (DOS) of FeSi agrees well with experiment, and shows metallic behavior. In agreement with a previous calculation the DOS of FeSi$_2$ shows a large density of $d$-states at the Fermi level, explaining the instability of the bulk phase. The electron charge distributions reveal a small charge transfer from Si to Fe atomic spheres in both compounds. While in FeSi the Fe-Si bond is indeed partially ionic, we show that in FeSi$_2$ the electron distribution corresponds to a covalent charge accumulation in the Fe-Si bond region. The reversed order of $d$-bands in FeSi with respect to FeSi$_2$ is understood in terms of crystal field splitting and Fe-Fe nearest neighbor $dd$-interactions in the CsCl structure, and a strong Si $p$/Fe $d$ bonding in the fluorite structure, respectively.



rate research

Read More

The search of direct-gap Si-based semiconductors is of great interest due to the potential application in many technologically relevant fields. This work examines the incorporation of He as a possible route to form a direct band gap in Si. Structure predictions and first-principles calculations have shown that He reacts with Si at high pressure, to form the stable compounds Si2He and Si3He. Both compounds have host-guest structures consisting of a channel-like Si host framework filled with He guest atoms. The Si frameworks in two compounds could be persisted to ambient pressure after removal of He, forming two pure Si allotropes. Both Si-He compounds and both Si allotropes exhibit direct or quasi-direct band gaps of 0.84-1.34 eV, close to the optimal value (~1.3 eV) for solar cell applications. Analysis shows that Si2He with an electric-dipole-transition allowed band gap possesses higher absorption capacity than diamond cubic Si, which makes it to be a promising candidate material for thin-film solar cell.
The origin of the stabilized simple-cubic (SC) structure in Po is explored by using the first principle band calculations. We have found that the prime origin is the inherent strong spin-orbit (SO) interaction in Po, which suppresses the Peierls-like structural instability as usually occurs in p-bonded systems. Based on the systematic analysis of electronic structures, charge densities, Fermi surfaces, and susceptibilities of Se, Te, and Po, we have proved that the stable crystal structure in VIA elements is determined by the competition between the SO splitting and the crystal field splitting induced by the low-symmetry structural transition. The trigonal structure is stabilized in Se and Te by the larger crystal field splitting than the SO splitting, whereas in Po the SC structure is stabilized by the large SO splitting.
Fast, reversible redox reactions in solids at low temperatures without thermomechanical degradation are a promising strategy for enhancing the overall performance and lifetime of many energy materials and devices. However, the robust nature of the cations oxidation state and the high thermodynamic barrier have hindered the realization of fast catalysis and bulk diffusion at low temperatures. Here, we report a significant lowering of the redox temperature by epitaxial stabilization of strontium cobaltites (SrCoOx) grown directly as one of two distinct crystalline phases, either the perovskite SrCoO3-{delta} or the brownmillerite SrCoO2.5. Importantly, these two phases can be reversibly switched at a remarkably reduced temperature (200~300 {deg}C) in a considerably short time (< 1 min) without destroying the parent framework. The fast, low temperature redox activity in SrCoO3-{delta} is attributed to a small Gibbs free energy difference between two topotatic phases. Our findings thus provide useful information for developing highly sensitive electrochemical sensors and low temperature cathode materials.
Single-crystalline thin film of an iridium dioxide polymorph Ir2O4 has been fabricated by the pulsed laser deposition of LixIr2O4 precursor and the subsequent Li-deintercalation using soft chemistry. Ir2O4 crystallizes in a spinel (AB2O4) without A cations in the tetrahedral site, which is isostructural to lambda-MnO2. Ir ions form a pyrochlore sublattice, which is known to give rise to a strong geometrical frustration. This Ir spinel was found to be a narrow gap insulator, in remarkable contrast to the metallic ground state of rutile-type IrO2. We argue that an interplay of strong spin-orbit coupling and a Coulomb repulsion gives rise to an insulating ground state as in a layered perovskite Sr2IrO4.
389 - A. A. Kordyuk 2012
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron interaction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا