No Arabic abstract
To cope with the intractability of answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Problems (CSPs), several notions of hypergraph decompositions have been proposed -- giving rise to different notions of width, noticeably, plain, generalized, and fractional hypertree width (hw, ghw, and fhw). Given the increasing interest in using such decomposition methods in practice, a publicly accessible repository of decomposition software, as well as a large set of benchmarks, and a web-accessible workbench for inserting, analysing, and retrieving hypergraphs are called for. We address this need by providing (i) concrete implementations of hypergraph decompositions (including new practical algorithms), (ii) a new, comprehensive benchmark of hypergraphs stemming from disparate CQ and CSP collections, and (iii) HyperBench, our new web-inter-face for accessing the benchmark and the results of our analyses. In addition, we describe a number of actual experiments we carried out with this new infrastructure.
To cope with the intractability of answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Problems (CSPs), several notions of hypergraph decompositions have been proposed -- giving rise to different notions of width, noticeably, plai
Data analysis requires translating higher level questions and hypotheses into computable statistical models. We present a mixed-methods study aimed at identifying the steps, considerations, and challenges involved in operationalizing hypotheses into statistical models, a process we refer to as hypothesis formalization. In a formative content analysis of research papers, we find that researchers highlight decomposing a hypothesis into sub-hypotheses, selecting proxy variables, and formulating statistical models based on data collection design as key steps. In a lab study, we find that analysts fixated on implementation and shaped their analysis to fit familiar approaches, even if sub-optimal. In an analysis of software tools, we find that tools provide inconsistent, low-level abstractions that may limit the statistical models analysts use to formalize hypotheses. Based on these observations, we characterize hypothesis formalization as a dual-search process balancing conceptual and statistical considerations constrained by data and computation, and discuss implications for future tools.
Chest X-rays are the most common diagnostic exams in emergency rooms and hospitals. There has been a surge of work on automatic interpretation of chest X-rays using deep learning approaches after the availability of large open source chest X-ray dataset from NIH. However, the labels are not sufficiently rich and descriptive for training classification tools. Further, it does not adequately address the findings seen in Chest X-rays taken in anterior-posterior (AP) view which also depict the placement of devices such as central vascular lines and tubes. In this paper, we present a new chest X-ray benchmark database of 73 rich sentence-level descriptors of findings seen in AP chest X-rays. We describe our method of obtaining these findings through a semi-automated ground truth generation process from crowdsourcing of clinician annotations. We also present results of building classifiers for these findings that show that such higher granularity labels can also be learned through the framework of deep learning classifiers.
Electrocardiography plays an essential role in diagnosing and screening cardiovascular diseases in daily healthcare. Deep neural networks have shown the potentials to improve the accuracies of arrhythmia detection based on electrocardiograms (ECGs). However, more ECG records with ground truth are needed to promote the development and progression of deep learning techniques in automatic ECG analysis. Here we propose a web-based tool for ECG viewing and annotating, LabelECG. With the facilitation of unified data management, LabelECG is able to distribute large cohorts of ECGs to dozens of technicians and physicians, who can simultaneously make annotations through web-browsers on PCs, tablets and cell phones. Along with the doctors from four hospitals in China, we applied LabelECG to support the annotations of about 15,000 12-lead resting ECG records in three months. These annotated ECGs have successfully supported the First China ECG intelligent Competition. La-belECG will be freely accessible on the Internet to support similar researches, and will also be upgraded through future works.
DSS serve the management, operations, and planning levels of an organization and help to make decisions, which may be rapidly changing and not easily specified in advance. Data mining has a vital role to extract important information to help in decision making of a decision support system. Integration of data mining and decision support systems (DSS) can lead to the improved performance and can enable the tackling of new types of problems. Artificial Intelligence methods are improving the quality of decision support, and have become embedded in many applications ranges from ant locking automobile brakes to these days interactive search engines. It provides various machine learning techniques to support data mining. The classification is one of the main and valuable tasks of data mining. Several types of classification algorithms have been suggested, tested and compared to determine the future trends based on unseen data. There has been no single algorithm found to be superior over all others for all data sets. The objective of this paper is to compare various classification algorithms that have been frequently used in data mining for decision support systems. Three decision trees based algorithms, one artificial neural network, one statistical, one support vector machines with and without ada boost and one clustering algorithm are tested and compared on four data sets from different domains in terms of predictive accuracy, error rate, classification index, comprehensibility and training time. Experimental results demonstrate that Genetic Algorithm (GA) and support vector machines based algorithms are better in terms of predictive accuracy. SVM without adaboost shall be the first choice in context of speed and predictive accuracy. Adaboost improves the accuracy of SVM but on the cost of large training time.