Do you want to publish a course? Click here

Symmetry-driven atomic rearrangement at a brownmillerite-perovskite interface

184   0   0.0 ( 0 )
 Added by Tricia Meyer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many of the recent advancements in oxide heterostructures have been attributed to modification of spin, charge, lattice, and orbital order parameters at atomically well-defined interfaces. However, the details on the structural, chemical, and electrostatic evolution of interfaces comprised of materials with different crystallographic symmetries remain to be understood. In this work, we have mapped out the interfacial connectivity of atoms of two dissimilar materials, the perovskite SrTiO3 and the brownmillerite SrCoO2.5, using high resolution scanning transmission electron microscopy and geometric phase analysis. We observed unique symmetry-mismatch driven atomic displacements restricted to only the first few atomic layers, which can critically modify the properties of the system. Provided that SrCoO2.5 is a promising energy material due to its open framework structure, the improved understanding of the interfacial structure on the atomic level can lead to the rational design of novel oxide heterostructures.



rate research

Read More

Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties. Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/ LaAlO3 (LAO)/ Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90{deg} at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the eg and t2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.
Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar / non-polar junction of LaFeO$_3$ (LFO) / $n$-SrTiO$_3$ (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO$_2$ and SrO) terminations were prepared prior to LFO deposition; however, local electron energy loss spectroscopy measurements of the final heterojunctions show a predominantly LaO / TiO$_2$ interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO / TiO$_2$) and forming oxygen vacancies (in FeO$_2$ / SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO$_2$ / SrO interface. We conclude that judicious control of deposition timescales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.
Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclooctatetraene (C8H8) and a small transition metal - benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface -- a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin-dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin-polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially-dependent spin-resolved vacuum charge density above an adsorbed molecule -- i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d-states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).
The 3D local atomic structures and crystal defects at the interfaces of heterostructures control their electronic, magnetic, optical, catalytic and topological quantum properties, but have thus far eluded any direct experimental determination. Here we determine the 3D local atomic positions at the interface of a MoS2-WSe2 heterojunction with picometer precision and correlate 3D atomic defects with localized vibrational properties at the epitaxial interface. We observe point defects, bond distortion, atomic-scale ripples and measure the full 3D strain tensor at the heterointerface. By using the experimental 3D atomic coordinates as direct input to first principles calculations, we reveal new phonon modes localized at the interface, which are corroborated by spatially resolved electron energy-loss spectroscopy. We expect that this work will open the door to correlate structure-property relationships of a wide range of heterostructure interfaces at the single-atom level.
We realize Mn $delta$-doping into Si and Si/Ge interfaces using Mn atomic chains on Si(001). Highly sensitive X-ray absorption fine structure techniques reveal that encapsulation at room temperature prevents the formation of silicides / germanides whilst maintaining one dimensional anisotropic structures. This is revealed by studying both the incident X-ray polarization dependence and post-annealing effects. Density functional theory calculations suggest that Mn atoms are located at substitutional sites, and show good agreement with experiment. A comprehensive magnetotransport study reveals magnetic ordering within the Mn $delta$-doped layer, which is present at around 120,K. We demonstrate that doping methods based on the burial of surface nanostructures allows for the realization of systems for which conventional doping methods fail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا