Do you want to publish a course? Click here

Categorified Noncommutative manifolds

649   0   0.0 ( 0 )
 Added by Rachel Martins
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a noncommutative geometry with generalised `tangent bundle from Fell bundle $C^*$-categories ($E$) beginning by replacing pair groupoid objects (points) with objects in $E$. This provides a categorification of a certain class of real spectral triples where the Dirac operator is constructed from morphisms in a category. Applications for physics include quantisation via the tangent groupoid and new constraints on $D_{mathrm{finite}}$ (the fermion mass matrix).



rate research

Read More

The exact solution of a Cauchy problem related to a linear second-order difference equation with constant noncommutative coefficients is reported.
In this paper we study in a Hilbert space a homogeneous linear second order difference equation with nonconstant and noncommuting operator coefficients. We build its exact resolutive formula consisting in the explicit non-iterative expression of a generic term of the unknown sequence of vectors of the Hilbert space. Some non-trivial applications are reported with the aim of showing the usefulness and the broad applicability of our result.
82 - A.Kurov , G.Sardanashvily 2016
Superintegrable systems on a symplectic manifold conventionally are considered. However, their definition implies a rather restrictive condition 2n=k+m where 2n is a dimension of a symplectic manifold, k is a dimension of a pointwise Lie algebra of a superintegrable system, and m is its corank. To solve this problem, we aim to consider partially superintegrable systems on Poisson manifolds where k+m is the rank of a compatible Poisson structure. The according extensions of the Mishchenko-Fomenko theorem on generalized action-angle coordinates is formulated.
The trajectories of a qubit dynamics over the two-sphere are shown to be geodesics of certain Riemannian or physically-sound Lorentzian manifolds, both in the non-dissipative and dissipative formalisms, when using action-angle variables. Several aspects of the geometry and topology of these manifolds (qubit manifolds) have been studied for some special physical cases.
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are given in order to clearly illustrate the main ideas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا