This note places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear state-space theory for control systems. In particular, it is shown that the algebraic method can in a sense be seen as a special case of deadbeat state estimation based on the reconstructibility Gramian of the considered system.
A system of partial differential equations describing the spatial oscillations of an Euler-Bernoulli beam with a tip mass is considered. The linear system considered is actuated by two independent controls and separated into a pair of differential equations in a Hilbert space. A feedback control ensuring strong stability of the equilibrium in the sense of Lyapunov is proposed. The proof of the main result is based on the theory of strongly continuous semigroups.
We provide a full characterization of the oblique projector $U(VU)^+V$ in the general case where the range of $U$ and the null space of $V$ are not complementary subspaces. We discuss the new result in the context of constrained least squares minimization.
We study and extend the semidefinite programming (SDP) hierarchies introduced in [Phys. Rev. Lett. 115, 020501] for the characterization of the statistical correlations arising from finite dimensional quantum systems. First, we introduce the dimension-constrained noncommutative polynomial optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization is conducted over all feasible operator representations of bounded dimensionality. Important problems in device independent and semi-device independent quantum information science can be formulated (or almost formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these relaxations, we use them to derive new dimension witnesses for temporal and Bell-type correlation scenarios, and also to bound the probability of success of quantum random access codes.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
This paper provides insight on the economic inefficiency of the classical merit-order dispatch in electricity markets with uncertain supply. For this, we consider a power system whose operation is driven by a two-stage electricity market, with a forward and a real-time market. We analyze two different clearing mechanisms: a conventional one, whereby the forward and the balancing markets are independently cleared following a merit order, and a stochastic one, whereby both market stages are co-optimized with a view to minimizing the expected aggregate system operating cost. We first derive analytical formulae to determine the dispatch rule prompted by the co-optimized two-stage market for a stylized power system with flexible, inflexible and stochastic power generation and infinite transmission capacity. This exercise sheds light on the conditions for the stochastic market-clearing mechanism to break the merit order. We then introduce and characterize two enhanced variants of the conventional two-stage market that result in either price-consistent or cost-efficient merit-order dispatch solutions, respectively. The first of these variants corresponds to a conventional two-stage market that allows for virtual bidding, while the second requires that the stochastic power production be centrally dispatched. Finally, we discuss the practical implications of our analytical results and illustrate our conclusions through examples.
The joint management of heat and power systems is believed to be key to the integration of renewables into energy systems with a large penetration of district heating. Determining the day-ahead unit commitment and production schedules for these systems is an optimization problem subject to uncertainty stemming from the unpredictability of demand and prices for heat and electricity. Furthermore, owing to the dynamic features of production and heat storage units as well as to the length and granularity of the optimization horizon (e.g., one whole day with hourly resolution), this problem is in essence a multi-stage one. We propose a formulation based on robust optimization where recourse decisions are approximated as linear or piecewise-linear functions of the uncertain parameters. This approach allows for a rigorous modeling of the uncertainty in multi-stage decision-making without compromising computational tractability. We perform an extensive numerical study based on data from the Copenhagen area in Denmark, which highlights important features of the proposed model. Firstly, we illustrate commitment and dispatch choices that increase conservativeness in the robust optimization approach. Secondly, we appraise the gain obtained by switching from linear to piecewise-linear decision rules within robust optimization. Furthermore, we give directions for selecting the parameters defining the uncertainty set (size, budget) and assess the resulting trade-off between average profit and conservativeness of the solution. Finally, we perform a thorough comparison with competing models based on deterministic optimization and stochastic programming.
We present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iteration of FCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized emph{approximately/inexactly} to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We present several high probability iteration complexity results to show that convergence of FCD is guaranteed theoretically. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.
In this paper we propose distributed dynamic controllers for sharing both frequency containment and restoration reserves of asynchronous AC systems connected through a multi-terminal HVDC (MTDC) grid. The communication structure of the controller is distributed in the sense that only local and neighboring state information is needed, rather than the complete state. We derive sufficient stability conditions, which guarantee that the AC frequencies converge to the nominal frequency. Simultaneously, a global quadratic power generation cost function is minimized. The proposed controller also regulates the voltages of the MTDC grid, asymptotically minimizing a quadratic cost function of the deviations from the nominal DC voltages. The results are valid for distributed cable models of the HVDC grid (e.g. $pi$-links), as well as AC systems of arbitrary number of synchronous machines, each modeled by the swing equation. We also propose a decentralized, communication-free version of the controller. The proposed controllers are tested on a high-order dynamic model of a power system consisting of asynchronous AC grids, modelled as IEEE 14 bus networks, connected through a six-terminal HVDC grid. The performance of the controller is successfully evaluated through simulation.
We analysis some singular partial differential equations systems(PDAEs) with boundary conditions in high dimension bounded domain with sufficiently smooth boundary. With the eigenvalue theory of PDE the systems initially is formulated as an infinite-dimensional singular systems. The state space description of the system is built according to the spectrum structure and convergence analysis of the PDAEs. Some global stability results are provided. The applicability of the proposed approach is evaluated in numerical simulations on some wetland conservation system with social behaviour.